def _filter(dosage, metadata, individual_ids, biallelic_only, maf_threshold): if biallelic_only and GenotypeUtilities._biallelic_filter(dosage, metadata, individual_ids): return True if maf_threshold and GenotypeUtilities._maf_filter_min_threshold(dosage, metadata, individual_ids, maf_threshold): return True return False
def run(args): if os.path.exists(args.output): logging.info("output exists already, delete it or move it") return logging.info("Starting") Utilities.ensure_requisite_folders(args.output) logging.info("Loading data annotation") gene_annotation = StudyUtilities.load_gene_annotation(args.gene_annotation) gene_annotation = gene_annotation.rename( {"gene_name": "genename"}, axis=1)[["gene_id", "genename", "gene_type"]] logging.info("Loading variant annotation") features_metadata = pq.read_table(args.features_annotation).to_pandas() logging.info("Loading spec") weights = get_weights(args.spec) w = weights.merge(features_metadata[["id", "allele_0", "allele_1", "rsid"]], on="id", how="left") w = w.rename( { "allele_0": "ref_allele", "allele_1": "eff_allele", "id": "varID" }, axis=1) w["gene"] = w.gene_id.str.cat(w.cluster_id.astype(str), sep="_") w = w.drop(["w", "cluster_id"], axis=1) w = w.sort_values(by="gene").assign(weight=1) logging.info("Building models") with sqlite3.connect(args.output) as conn: w.drop("gene_id", axis=1).fillna("NA")[[ "gene", "rsid", "varID", "ref_allele", "eff_allele", "weight" ]].to_sql("weights", conn, index=False) e = w[["gene_id", "gene"]].merge(gene_annotation, on="gene_id").drop("gene_id", axis=1) e["n_snps_in_window"] = None e["n.snps.in.model"] = 1 e["pred.perf.pval"] = None e["pred.perf.qval"] = None e["pred.perf.R2"] = None e = e[[ "gene", "genename", "gene_type", "n_snps_in_window", "n.snps.in.model", "pred.perf.R2", "pred.perf.pval", "pred.perf.qval" ]] e.to_sql("extra", conn, index=False) Models.model_indexes(conn) logging.info("Finished")
def run(args): wp = args.output_prefix + "_weights.txt.gz" if os.path.exists(wp): logging.info("Weights output exists already, delete it or move it") return sp = args.output_prefix + "_summary.txt.gz" if os.path.exists(sp): logging.info("Summary output exists already, delete it or move it") return cp = args.output_prefix + "_covariance.txt.gz" if os.path.exists(wp): logging.info("covariance output exists already, delete it or move it") return r = args.output_prefix + "_run.txt.gz" if os.path.exists(wp): logging.info("run output exists already, delete it or move it") return logging.info("Starting") Utilities.ensure_requisite_folders(args.output_prefix) logging.info("Opening data") data = pq.ParquetFile(args.data) available_data = {x for x in data.metadata.schema.names} logging.info("Loading data annotation") data_annotation = StudyUtilities.load_gene_annotation( args.data_annotation, args.chromosome, args.sub_batches, args.sub_batch) data_annotation = data_annotation[data_annotation.gene_id.isin( available_data)] if args.gene_whitelist: logging.info("Applying gene whitelist") data_annotation = data_annotation[data_annotation.gene_id.isin( set(args.gene_whitelist))] logging.info("Kept %i entries", data_annotation.shape[0]) logging.info("Opening features annotation") if not args.chromosome: features_metadata = pq.read_table(args.features_annotation).to_pandas() else: features_metadata = pq.ParquetFile( args.features_annotation).read_row_group(args.chromosome - 1).to_pandas() if args.chromosome and args.sub_batches: logging.info("Trimming variants") features_metadata = StudyUtilities.trim_variant_metadata_on_gene_annotation( features_metadata, data_annotation, args.window) if args.rsid_whitelist: logging.info("Filtering features annotation") whitelist = TextFileTools.load_list(args.rsid_whitelist) whitelist = set(whitelist) features_metadata = features_metadata[features_metadata.rsid.isin( whitelist)] if args.features_weights: logging.info("Loading weights") x_weights = get_weights(args.features_weights, {x for x in features_metadata.id}) logging.info( "Filtering features metadata to those available in weights") features_metadata = features_metadata[features_metadata.id.isin( x_weights.id)] logging.info("Kept %d entries", features_metadata.shape[0]) else: x_weights = None logging.info("Opening features") features = pq.ParquetFile(args.features) logging.info("Setting R seed") s = numpy.random.randint(1e8) set_seed(s) if args.run_tag: d = pandas.DataFrame({ "run": [args.run_tag], "cv_seed": [s] })[["run", "cv_seed"]] Utilities.save_dataframe(d, r) WEIGHTS_FIELDS = [ "gene", "rsid", "varID", "ref_allele", "eff_allele", "weight" ] SUMMARY_FIELDS = [ "gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "test_R2_avg", "test_R2_sd", "cv_R2_avg", "cv_R2_sd", "in_sample_R2", "nested_cv_fisher_pval", "nested_cv_converged", "rho_avg", "rho_se", "rho_zscore", "pred.perf.R2", "pred.perf.pval", "pred.perf.qval" ] train = train_elastic_net_wrapper if args.mode == "elastic_net" else train_ols with gzip.open(wp, "w") as w: w.write(("\t".join(WEIGHTS_FIELDS) + "\n").encode()) with gzip.open(sp, "w") as s: s.write(("\t".join(SUMMARY_FIELDS) + "\n").encode()) with gzip.open(cp, "w") as c: c.write("GENE RSID1 RSID2 VALUE\n".encode()) for i, data_annotation_ in enumerate( data_annotation.itertuples()): if args.MAX_M and i >= args.MAX_M: logging.info("Early abort") break logging.log(9, "processing %i/%i:%s", i + 1, data_annotation.shape[0], data_annotation_.gene_id) if args.repeat: for j in range(0, args.repeat): logging.log(9, "%i-th reiteration", j) process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, j, args.nested_cv_folds) else: process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, nested_folds=args.nested_cv_folds) logging.info("Finished")
def run(args): Utilities.maybe_create_folder(args.intermediate_folder) Utilities.ensure_requisite_folders(args.output_prefix) logging.info("Opening data") p_ = re.compile(args.data_name_pattern) f = [x for x in sorted(os.listdir(args.data_folder)) if p_.search(x)] tissue_names = [p_.search(x).group(1) for x in f] data = [] for i in range(0, len(tissue_names)): logging.info("Loading %s", tissue_names[i]) data.append((tissue_names[i], pq.ParquetFile(os.path.join(args.data_folder, f[i])))) data = collections.OrderedDict(data) available_data = { x for p in data.values() for x in p.metadata.schema.names } logging.info("Preparing output") WEIGHTS_FIELDS = [ "gene", "rsid", "varID", "ref_allele", "eff_allele", "weight" ] SUMMARY_FIELDS = [ "gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "rho_avg", "pred.perf.R2", "pred.perf.pval" ] Utilities.ensure_requisite_folders(args.output_prefix) if args.skip_regression: weights, summaries, covariances = None, None, None else: weights, summaries, covariances = setup_output(args.output_prefix, tissue_names, WEIGHTS_FIELDS, SUMMARY_FIELDS) logging.info("Loading data annotation") data_annotation = StudyUtilities._load_gene_annotation( args.data_annotation) data_annotation = data_annotation[data_annotation.gene_id.isin( available_data)] if args.chromosome or (args.sub_batches and args.sub_batch): data_annotation = StudyUtilities._filter_gene_annotation( data_annotation, args.chromosome, args.sub_batches, args.sub_batch) logging.info("Kept %i entries", data_annotation.shape[0]) logging.info("Opening features annotation") if not args.chromosome: features_metadata = pq.read_table(args.features_annotation).to_pandas() else: features_metadata = pq.ParquetFile( args.features_annotation).read_row_group(args.chromosome - 1).to_pandas() if args.chromosome and args.sub_batches: logging.info("Trimming variants") features_metadata = StudyUtilities.trim_variant_metadata_on_gene_annotation( features_metadata, data_annotation, args.window) if args.rsid_whitelist: logging.info("Filtering features annotation") whitelist = TextFileTools.load_list(args.rsid_whitelist) whitelist = set(whitelist) features_metadata = features_metadata[features_metadata.rsid.isin( whitelist)] logging.info("Opening features") features = pq.ParquetFile(args.features) logging.info("Setting R seed") seed = numpy.random.randint(1e8) if args.run_tag: d = pandas.DataFrame({ "run": [args.run_tag], "cv_seed": [seed] })[["run", "cv_seed"]] for t in tissue_names: Utilities.save_dataframe( d, "{}_{}_runs.txt.gz".format(args.output_prefix, t)) failed_run = False try: for i, data_annotation_ in enumerate(data_annotation.itertuples()): logging.log(9, "processing %i/%i:%s", i + 1, data_annotation.shape[0], data_annotation_.gene_id) logging.log(8, "loading data") d_ = {} for k, v in data.items(): d_[k] = Parquet._read(v, [data_annotation_.gene_id], to_pandas=True) features_ = Genomics.entries_for_gene_annotation( data_annotation_, args.window, features_metadata) if features_.shape[0] == 0: logging.log(9, "No features available") continue features_data_ = Parquet._read(features, [x for x in features_.id.values], to_pandas=True) features_data_["id"] = range(1, features_data_.shape[0] + 1) features_data_ = features_data_[["individual", "id"] + [x for x in features_.id.values]] logging.log(8, "training") prepare_ctimp(args.script_path, seed, args.intermediate_folder, data_annotation_, features_, features_data_, d_) del (features_data_) del (d_) if args.skip_regression: continue subprocess.call([ "bash", _execution_script(args.intermediate_folder, data_annotation_.gene_id) ]) w = pandas.read_table(_weights(args.intermediate_folder, data_annotation_.gene_id), sep="\s+") s = pandas.read_table(_summary(args.intermediate_folder, data_annotation_.gene_id), sep="\s+") for e_, entry in enumerate(s.itertuples()): entry_weights = w[["SNP", "REF.0.", "ALT.1.", entry.tissue]].rename( columns={ "SNP": "varID", "REF.0.": "ref_allele", "ALT.1.": "eff_allele", entry.tissue: "weight" }) entry_weights = entry_weights[entry_weights.weight != 0] entry_weights = entry_weights.assign( gene=data_annotation_.gene_id) entry_weights = entry_weights.merge(features_, left_on="varID", right_on="id", how="left") entry_weights = entry_weights[WEIGHTS_FIELDS] if args.output_rsids: entry_weights.loc[entry_weights.rsid == "NA", "rsid"] = entry_weights.loc[ entry_weights.rsid == "NA", "varID"] weights[entry.tissue].write( entry_weights.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) entry_summary = s[s.tissue == entry.tissue].rename( columns={ "zscore_pval": "pred.perf.pval", "rho_avg_squared": "pred.perf.R2" }) entry_summary = entry_summary.assign( gene=data_annotation_.gene_id, alpha=0.5, genename=data_annotation_.gene_name, gene_type=data_annotation_.gene_type, n_snps_in_window=features_.shape[0]) entry_summary["n.snps.in.model"] = entry_weights.shape[0] #must repeat strings beause of weird pandas indexing issue entry_summary = entry_summary.drop( ["R2", "n", "tissue"], axis=1)[[ "gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "rho_avg", "pred.perf.R2", "pred.perf.pval" ]] summaries[entry.tissue].write( entry_summary.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) features_data_ = Parquet._read( features, [x for x in entry_weights.varID.values], to_pandas=True) var_ids = [x for x in entry_weights.varID.values] cov = numpy.cov([features_data_[k] for k in var_ids], ddof=1) ids = [x for x in entry_weights.rsid.values ] if args.output_rsids else var_ids cov = matrices._flatten_matrix_data([(data_annotation_.gene_id, ids, cov)]) for cov_ in cov: l = "{} {} {} {}\n".format(cov_[0], cov_[1], cov_[2], cov_[3]).encode() covariances[entry.tissue].write(l) if not args.keep_intermediate_folder: logging.info("Cleaning up") shutil.rmtree( _intermediate_folder(args.intermediate_folder, data_annotation_.gene_id)) if args.MAX_M and i >= args.MAX_M: logging.info("Early abort") break except Exception as e: logging.info("Exception running model training:\n%s", traceback.format_exc()) failed_run = True finally: pass # if not args.keep_intermediate_folder: # shutil.rmtree(args.intermediate_folder) if not args.skip_regression: set_down(weights, summaries, covariances, tissue_names, failed_run) logging.info("Finished")
def run(args): wp = args.output_prefix + "_weights.txt.gz" if os.path.exists(wp): logging.info("Weights output exists already, delete it or move it") return sp = args.output_prefix + "_summary.txt.gz" if os.path.exists(sp): logging.info("Summary output exists already, delete it or move it") return cp = args.output_prefix + "_covariance.txt.gz" if os.path.exists(wp): logging.info("covariance output exists already, delete it or move it") return r = args.output_prefix + "_run.txt.gz" if os.path.exists(wp): logging.info("run output exists already, delete it or move it") return logging.info("Starting") Utilities.ensure_requisite_folders(args.output_prefix) logging.info("Opening data") data = pq.ParquetFile(args.data) available_data = {x for x in data.metadata.schema.names} logging.info("Loading data annotation") data_annotation = StudyUtilities.load_gene_annotation(args.data_annotation, args.chromosome, args.sub_batches, args.sub_batch, args.simplify_data_annotation) data_annotation = data_annotation[data_annotation.gene_id.isin(available_data)] if args.gene_whitelist: logging.info("Applying gene whitelist") data_annotation = data_annotation[data_annotation.gene_id.isin(set(args.gene_whitelist))] logging.info("Kept %i entries", data_annotation.shape[0]) logging.info("Opening features annotation") if not args.chromosome: features_metadata = pq.read_table(args.features_annotation).to_pandas() else: features_metadata = pq.ParquetFile(args.features_annotation).read_row_group(args.chromosome-1).to_pandas() if args.output_rsids: if not args.keep_highest_frequency_rsid_entry and features_metadata[(features_metadata.rsid != "NA") & features_metadata.rsid.duplicated()].shape[0]: logging.warning("Several variants map to a same rsid (hint: multiple INDELS?).\n" "Can't proceed. Consider the using the --keep_highest_frequency_rsid flag, or models will be ill defined.") return if args.chromosome and args.sub_batches: logging.info("Trimming variants") features_metadata = StudyUtilities.trim_variant_metadata_on_gene_annotation(features_metadata, data_annotation, args.window) logging.info("Kept %d", features_metadata.shape[0]) if args.variant_call_filter: logging.info("Filtering variants by average call rate") features_metadata = features_metadata[features_metadata.avg_call > args.variant_call_filter] logging.info("Kept %d", features_metadata.shape[0]) if args.variant_r2_filter: logging.info("Filtering variants by imputation R2") features_metadata = features_metadata[features_metadata.r2 > args.variant_r2_filter] logging.info("Kept %d", features_metadata.shape[0]) if args.variant_variance_filter: logging.info("Filtering variants by (dosage/2)'s variance") features_metadata = features_metadata[features_metadata["std"]/2 > numpy.sqrt(args.variant_variance_filter)] logging.info("Kept %d", features_metadata.shape[0]) if args.discard_palindromic_snps: logging.info("Discarding palindromic snps") features_metadata = Genomics.discard_gtex_palindromic_variants(features_metadata) logging.info("Kept %d", features_metadata.shape[0]) if args.rsid_whitelist: logging.info("Filtering features annotation for whitelist") whitelist = TextFileTools.load_list(args.rsid_whitelist) whitelist = set(whitelist) features_metadata = features_metadata[features_metadata.rsid.isin(whitelist)] logging.info("Kept %d", features_metadata.shape[0]) if args.only_rsids: logging.info("discarding non-rsids") features_metadata = StudyUtilities.trim_variant_metadata_to_rsids_only(features_metadata) logging.info("Kept %d", features_metadata.shape[0]) if args.keep_highest_frequency_rsid_entry and features_metadata[(features_metadata.rsid != "NA") & features_metadata.rsid.duplicated()].shape[0]: logging.info("Keeping only the highest frequency entry for every rsid") k = features_metadata[["rsid", "allele_1_frequency", "id"]] k.loc[k.allele_1_frequency > 0.5, "allele_1_frequency"] = 1 - k.loc[k.allele_1_frequency > 0.5, "allele_1_frequency"] k = k.sort_values(by=["rsid", "allele_1_frequency"], ascending=False) k = k.groupby("rsid").first().reset_index() features_metadata = features_metadata[features_metadata.id.isin(k.id)] logging.info("Kept %d", features_metadata.shape[0]) else: logging.info("rsids are unique, no need to restrict to highest frequency entry") if args.features_weights: logging.info("Loading weights") x_weights = get_weights(args.features_weights, {x for x in features_metadata.id}) logging.info("Filtering features metadata to those available in weights") features_metadata = features_metadata[features_metadata.id.isin(x_weights.id)] logging.info("Kept %d entries", features_metadata.shape[0]) else: x_weights = None logging.info("Opening features") features = pq.ParquetFile(args.features) logging.info("Setting R seed") s = numpy.random.randint(1e8) set_seed(s) if args.run_tag: d = pandas.DataFrame({"run":[args.run_tag], "cv_seed":[s]})[["run", "cv_seed"]] Utilities.save_dataframe(d, r) WEIGHTS_FIELDS=["gene", "rsid", "varID", "ref_allele", "eff_allele", "weight"] SUMMARY_FIELDS=["gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "test_R2_avg", "test_R2_sd", "cv_R2_avg", "cv_R2_sd", "in_sample_R2", "nested_cv_fisher_pval", "nested_cv_converged", "rho_avg", "rho_se", "rho_zscore", "pred.perf.R2", "pred.perf.pval", "pred.perf.qval"] train = train_elastic_net_wrapper if args.mode == "elastic_net" else train_ols available_individuals = check_missing(args, data, features) with gzip.open(wp, "w") as w: w.write(("\t".join(WEIGHTS_FIELDS) + "\n").encode()) with gzip.open(sp, "w") as s: s.write(("\t".join(SUMMARY_FIELDS) + "\n").encode()) with gzip.open(cp, "w") as c: c.write("GENE RSID1 RSID2 VALUE\n".encode()) for i,data_annotation_ in enumerate(data_annotation.itertuples()): if args.MAX_M and i>=args.MAX_M: logging.info("Early abort") break logging.log(9, "processing %i/%i:%s", i+1, data_annotation.shape[0], data_annotation_.gene_id) if args.repeat: for j in range(0, args.repeat): logging.log(9, "%i-th reiteration", j) process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, j, nested_folds=args.nested_cv_folds, use_individuals=available_individuals) else: process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, nested_folds=args.nested_cv_folds, use_individuals=available_individuals) logging.info("Finished")