コード例 #1
0
ファイル: base.py プロジェクト: sagar87/genomicsurveillance
    def get_logits(self, ltla=None, time=None, lineage=None):

        logits = self.posterior.dist(
            Sites.B1, ltla, None,
            lineage) * np.arange(0, self.num_time)[make_array(time)].reshape(
                1, -1, 1) + self.posterior.dist(Sites.C1, ltla, None, lineage)
        logits = self._expand_dims(logits)
        return logits
コード例 #2
0
ファイル: base.py プロジェクト: sagar87/genomicsurveillance
    def _indices(self, shape, *args):
        """Creates indices for easier access to variables."""
        indices = []
        for i, arg in enumerate(args):
            if arg is None:
                indices.append(np.arange(shape[i]))
            else:
                indices.append(make_array(arg))

        return np.ix_(*indices)
コード例 #3
0
ファイル: base.py プロジェクト: sagar87/genomicsurveillance
    def get_probabilities(self, ltla=None, time=None, lineage=None):
        logits = self.get_logits(ltla, time)
        p = np.exp(logits - logsumexp(logits, -1, keepdims=True))

        if lineage is not None:
            idx = make_array(lineage)
        else:
            idx = slice(None)

        return p[..., idx]
コード例 #4
0
ファイル: base.py プロジェクト: sagar87/genomicsurveillance
    def get_growth_rate_lineage(self, ltla, time=None, lineage=None):
        p = self.get_probabilities(ltla, time)
        b1 = self._expand_dims(self.posterior.dist(Sites.B1, ltla),
                               dim=self.TIME_DIM)
        gr = self.get_growth_rate(ltla, time)
        gr_lin = gr - np.einsum("mijk,milk->mijl", p, b1) + b1

        if lineage is not None:
            idx = make_array(lineage)
        else:
            idx = slice(None)

        return gr_lin[..., idx]
コード例 #5
0
ファイル: base.py プロジェクト: sagar87/genomicsurveillance
    def get_log_R_lineage(self, ltla=None, time=None, lineage=None):
        p = self.get_probabilities(ltla, time)
        # TODO: set this up
        # b = self.posterior.dist(Sites.B0, lineage)
        # b1 = np.concatenate([b, np.zeros((b.shape[0], 1))], -1)
        b1 = self._expand_dims(self.posterior.dist(Sites.B1, ltla),
                               dim=self.TIME_DIM)
        log_R = self.get_log_R(ltla, time)

        log_R_lineage = (log_R -
                         (np.einsum("mijk,milk->mijl", p, b1) * self.tau)) + (
                             b1 * self.tau)

        if lineage is not None:
            idx = make_array(lineage)
        else:
            idx = slice(None)

        return log_R_lineage[..., idx]