def __init__(self, enc, dec, latent_descr, feature_descr, tt_int=40, tt_type='usual', beta=0.01, gamma=0.1): super(GENTRL, self).__init__() self.enc = enc self.dec = dec self.num_latent = len(latent_descr) self.num_features = len(feature_descr) self.latent_descr = latent_descr self.feature_descr = feature_descr self.tt_int = tt_int self.tt_type = tt_type self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type) self.beta = beta self.gamma = gamma
def load(self, folder_to_load='./'): if folder_to_load[-1] != '/': folder_to_load = folder_to_load + '/' order = pickle.load(open(folder_to_load + 'order.pkl', 'rb')) self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type, order=order) self.enc.load_state_dict(torch.load(folder_to_load + 'enc.model')) self.dec.load_state_dict(torch.load(folder_to_load + 'dec.model')) self.lp.load_state_dict(torch.load(folder_to_load + 'lp.model'))
def load(self, folder_to_load='./', version=""): if folder_to_load[-1] != '/': folder_to_load = folder_to_load + '/' if version != '': self.checkpoint = int( re.match(r'-checkpoint_(\d+)', version).group(1)) order = pickle.load(open(folder_to_load + 'order.pkl' + version, 'rb')) self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type, order=order) self.enc.load_state_dict( torch.load(folder_to_load + 'enc.model' + version)) self.dec.load_state_dict( torch.load(folder_to_load + 'dec.model' + version)) self.lp.load_state_dict( torch.load(folder_to_load + 'lp.model' + version))
class GENTRL(nn.Module): ''' GENTRL model ''' def __init__(self, enc, dec, latent_descr, feature_descr, tt_int=40, tt_type='usual', beta=0.01, gamma=0.1): super(GENTRL, self).__init__() self.enc = enc self.dec = dec self.num_latent = len(latent_descr) self.num_features = len(feature_descr) self.latent_descr = latent_descr self.feature_descr = feature_descr self.tt_int = tt_int self.tt_type = tt_type self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type) self.beta = beta self.gamma = gamma def get_elbo(self, x, y): means, log_stds = torch.split(self.enc.encode(x), len(self.latent_descr), dim=1) latvar_samples = ( means + torch.randn_like(log_stds) * torch.exp(0.5 * log_stds)) rec_part = self.dec.weighted_forward(x, latvar_samples).mean() normal_distr_hentropies = (log(2 * pi) + 1 + log_stds).sum(dim=1) latent_dim = len(self.latent_descr) condition_dim = len(self.feature_descr) zy = torch.cat([latvar_samples, y], dim=1) log_p_zy = self.lp.log_prob(zy) y_to_marg = latent_dim * [True] + condition_dim * [False] log_p_y = self.lp.log_prob(zy, marg=y_to_marg) z_to_marg = latent_dim * [False] + condition_dim * [True] log_p_z = self.lp.log_prob(zy, marg=z_to_marg) log_p_z_by_y = log_p_zy - log_p_y log_p_y_by_z = log_p_zy - log_p_z kldiv_part = (-normal_distr_hentropies - log_p_zy).mean() elbo = rec_part - self.beta * kldiv_part elbo = elbo + self.gamma * log_p_y_by_z.mean() return elbo, { 'loss': -elbo.detach().cpu().numpy(), 'rec': rec_part.detach().cpu().numpy(), 'kl': kldiv_part.detach().cpu().numpy(), 'log_p_y_by_z': log_p_y_by_z.mean().detach().cpu().numpy(), 'log_p_z_by_y': log_p_z_by_y.mean().detach().cpu().numpy() } def save(self, folder_to_save='./', version=""): if folder_to_save[-1] != '/': folder_to_save = folder_to_save + '/' torch.save(self.enc.state_dict(), folder_to_save + 'enc.model' + version) torch.save(self.dec.state_dict(), folder_to_save + 'dec.model' + version) torch.save(self.lp.state_dict(), folder_to_save + 'lp.model' + version) pickle.dump(self.lp.order, open(folder_to_save + 'order.pkl' + version, 'wb')) def load(self, folder_to_load='./', version=""): if folder_to_load[-1] != '/': folder_to_load = folder_to_load + '/' order = pickle.load(open(folder_to_load + 'order.pkl' + version, 'rb')) self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type, order=order) self.enc.load_state_dict( torch.load(folder_to_load + 'enc.model' + version)) self.dec.load_state_dict( torch.load(folder_to_load + 'dec.model' + version)) self.lp.load_state_dict( torch.load(folder_to_load + 'lp.model' + version)) def train_as_vaelp(self, train_loader, num_epochs=10, verbose_step=50, lr=1e-3, save_path=None): optimizer = optim.Adam(self.parameters(), lr=lr) global_stats = TrainStats() local_stats = TrainStats() epoch_i = 0 to_reinit = False buf = None while epoch_i < num_epochs: i = 0 if verbose_step: print("Epoch", epoch_i + 1, ":", flush=True) if epoch_i in [0, 1, 5]: to_reinit = True for x_batch, y_batch in train_loader: i += 1 y_batch = y_batch.float().to(self.lp.tt_cores[0].device) if len(y_batch.shape) == 1: y_batch = y_batch.view(-1, 1).contiguous() if to_reinit: if (buf is None) or (buf.shape[0] < 5000): enc_out = self.enc.encode(x_batch) means, log_stds = torch.split(enc_out, len(self.latent_descr), dim=1) z_batch = (means + torch.randn_like(log_stds) * torch.exp(0.5 * log_stds)) cur_batch = torch.cat([z_batch, y_batch], dim=1) if buf is None: buf = cur_batch else: buf = torch.cat([buf, cur_batch]) else: descr = len(self.latent_descr) * [0] descr += len(self.feature_descr) * [1] self.lp.reinit_from_data(buf, descr) self.lp.cuda() buf = None to_reinit = False continue elbo, cur_stats = self.get_elbo(x_batch, y_batch) local_stats.update(cur_stats) global_stats.update(cur_stats) optimizer.zero_grad() loss = -elbo loss.backward() optimizer.step() if verbose_step and i % verbose_step == 0: local_stats.print() local_stats.reset() i = 0 epoch_i += 1 if i >= 0: local_stats.print() local_stats.reset() if save_path != None: self.save(save_path, version="_checkpoint_%d" % epoch_i) return global_stats def resemblence_filter(self, score, sm, memory): if len(memory) < 1: return score nb_occurences = memory.count(sm) if nb_occurences > 5: return 0 else: return score def train_as_rl(self, reward_fn, num_iterations=100000, verbose_step=50, batch_size=200, cond_lb=-2, cond_rb=0, lr_lp=1e-5, lr_dec=1e-6): optimizer_lp = optim.Adam(self.lp.parameters(), lr=lr_lp) optimizer_dec = optim.Adam(self.dec.latent_fc.parameters(), lr=lr_dec) global_stats = TrainStats() local_stats = TrainStats() cur_iteration = 0 while cur_iteration < num_iterations: print("!", end='') exploit_size = int(batch_size * (1 - 0.3)) exploit_z = self.lp.sample(exploit_size, 50 * ['s'] + ['m']) z_means = exploit_z.mean(dim=0) z_stds = exploit_z.std(dim=0) expl_size = int(batch_size * 0.3) expl_z = torch.randn(expl_size, exploit_z.shape[1]) expl_z = 2 * expl_z.to(exploit_z.device) * z_stds[None, :] expl_z += z_means[None, :] z = torch.cat([exploit_z, expl_z]) smiles = self.dec.sample(50, z, argmax=False) zc = torch.zeros(z.shape[0], 1).to(z.device) conc_zy = torch.cat([z, zc], dim=1) log_probs = self.lp.log_prob(conc_zy, marg=50 * [False] + [True]) log_probs += self.dec.weighted_forward(smiles, z) r_list = [reward_fn(s) for s in smiles] rewards = torch.tensor(r_list).float().to(exploit_z.device) rewards_bl = rewards - rewards.mean() optimizer_dec.zero_grad() optimizer_lp.zero_grad() loss = -(log_probs * rewards_bl).mean() loss.backward() optimizer_dec.step() optimizer_lp.step() valid_sm = [s for s in smiles if get_mol(s) is not None] cur_stats = { 'mean_reward': sum(r_list) / len(smiles), 'valid_perc': len(valid_sm) / len(smiles), 'max_reward': max(r_list) } local_stats.update(cur_stats) global_stats.update(cur_stats) cur_iteration += 1 if verbose_step and (cur_iteration + 1) % verbose_step == 0: local_stats.print() local_stats.reset() return global_stats def sample(self, num_samples): z = self.lp.sample(num_samples, 50 * ['s'] + ['m']) smiles = self.dec.sample(50, z, argmax=False) return smiles
class GENTRL(tf.keras.Model): ''' GENTRL model ''' def __init__(self, enc, dec, latent_descr, feature_descr, tt_int=40, tt_type='usual', beta=0.01, gamma=0.1): super(GENTRL, self).__init__() self.enc = enc self.dec = dec self.num_latent = len(latent_descr) self.num_features = len(feature_descr) self.latent_descr = latent_descr self.feature_descr = feature_descr self.tt_int = tt_int self.tt_type = tt_type self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type) self.beta = beta self.gamma = gamma def get_elbo(self, x, y): # print(r"not printing yet?") #zz means, log_stds = torch.split(self.enc.encode(x), #zz len(self.latent_descr), dim=1) means, log_stds = tf.split(self.enc.encode(x), num_or_size_splits=2, axis=1) #zz latvar_samples = (means + torch.randn_like(log_stds) * #zz torch.exp(0.5 * log_stds)) latvar_samples = ( means + tf.random.normal(shape=log_stds.shape, dtype=log_stds.dtype) * tf.math.exp(0.5 * log_stds)) #zz rec_part = self.dec.weighted_forward(x, latvar_samples).mean() rec_part = tf.reduce_mean(self.dec.weighted_forward(x, latvar_samples)) #zz normal_distr_hentropies = (log(2 * pi) + 1 + log_stds).sum(dim=1) normal_distr_hentropies = tf.reduce_mean(log(2 * pi) + 1 + log_stds, axis=1) latent_dim = len(self.latent_descr) condition_dim = len(self.feature_descr) #zz zy = torch.cat([latvar_samples, y], dim=1) zy = tf.concat([latvar_samples, y], axis=1) log_p_zy = self.lp.log_prob(zy) y_to_marg = latent_dim * [True] + condition_dim * [False] log_p_y = self.lp.log_prob(zy, marg=y_to_marg) z_to_marg = latent_dim * [False] + condition_dim * [True] log_p_z = self.lp.log_prob(zy, marg=z_to_marg) log_p_z_by_y = log_p_zy - log_p_y log_p_y_by_z = log_p_zy - log_p_z #zz kldiv_part = (-normal_distr_hentropies - log_p_zy).mean() kldiv_part = tf.reduce_mean(-normal_distr_hentropies - log_p_zy) elbo = rec_part - self.beta * kldiv_part #zz elbo = elbo + self.gamma * log_p_y_by_z.mean() elbo = elbo + self.gamma * tf.reduce_mean(log_p_y_by_z) # print(r"not printing yet?") """ #zz return elbo, { 'loss': -elbo.detach().cpu().numpy(), 'rec': rec_part.detach().cpu().numpy(), 'kl': kldiv_part.detach().cpu().numpy(), 'log_p_y_by_z': log_p_y_by_z.mean().detach().cpu().numpy(), 'log_p_z_by_y': log_p_z_by_y.mean().detach().cpu().numpy() } #zz """ return elbo, { 'loss': -elbo.numpy(), 'rec': rec_part.numpy(), 'kl': kldiv_part.numpy(), 'log_p_y_by_z': tf.reduce_mean(log_p_y_by_z).numpy(), 'log_p_z_by_y': tf.reduce_mean(log_p_z_by_y).numpy() } """zz def save(self, folder_to_save='./'): if folder_to_save[-1] != '/': folder_to_save = folder_to_save + '/' torch.save(self.enc.state_dict(), folder_to_save + 'enc.model') torch.save(self.dec.state_dict(), folder_to_save + 'dec.model') torch.save(self.lp.state_dict(), folder_to_save + 'lp.model') pickle.dump(self.lp.order, open(folder_to_save + 'order.pkl', 'wb')) def load(self, folder_to_load='./'): if folder_to_load[-1] != '/': folder_to_load = folder_to_load + '/' order = pickle.load(open(folder_to_load + 'order.pkl', 'rb')) self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type, order=order) self.enc.load_state_dict(torch.load(folder_to_load + 'enc.model')) self.dec.load_state_dict(torch.load(folder_to_load + 'dec.model')) self.lp.load_state_dict(torch.load(folder_to_load + 'lp.model')) zz """ def train_as_vaelp(self, train_loader, num_epochs=10, verbose_step=50, lr=1e-3): #zz optimizer = optim.Adam(self.parameters(), lr=lr) optimizer = tf.keras.optimizers.Adam(1e-4) global_stats = TrainStats() local_stats = TrainStats() epoch_i = 0 to_reinit = False buf = None while epoch_i < num_epochs: i = 0 if verbose_step: print("Epoch", epoch_i, ":") if epoch_i in [0, 1, 5]: to_reinit = True epoch_i += 1 for x_batch, y_batch in train_loader: if verbose_step: print("!", end='') i += 1 #zz y_batch = y_batch.float().to(self.lp.tt_cores[0].device) y_batch = tf.cast(y_batch, tf.float32) if len(y_batch.shape) == 1: #zz y_batch = y_batch.view(-1, 1).contiguous() y_batch = tf.reshape(tensor=y_batch, shape=(-1, 1)) if to_reinit: if (buf is None) or (buf.shape[0] < 5000): enc_out = self.enc.encode(x_batch) """ #zz means, log_stds = torch.split(enc_out, len(self.latent_descr), dim=1) z_batch = (means + torch.randn_like(log_stds) * torch.exp(0.5 * log_stds)) cur_batch = torch.cat([z_batch, y_batch], dim=1) #zz """ means, log_stds = tf.split(enc_out, num_or_size_splits=2, axis=1) z_batch = (means + tf.random.normal( shape=log_stds.shape, mean=0.0, stddev=1.0) * tf.math.exp(0.5 * log_stds)) cur_batch = tf.concat([z_batch, y_batch], axis=1) if buf is None: buf = cur_batch else: #zz buf = torch.cat([buf, cur_batch]) buf = tf.concat([buf, cur_batch], axis=0) else: descr = len(self.latent_descr) * [0] descr += len(self.feature_descr) * [1] self.lp.reinit_from_data(buf, descr) #zz self.lp.cuda() buf = None to_reinit = False continue elbo, cur_stats = self.get_elbo(x_batch, y_batch) local_stats.update(cur_stats) global_stats.update(cur_stats) #zz optimizer.zero_grad() loss = -elbo #zz loss.backward() #zz optimizer.step() if verbose_step and i % verbose_step == 0: local_stats.print() local_stats.reset() i = 0 epoch_i += 1 if i > 0: local_stats.print() local_stats.reset() return global_stats """ zz skip train_as_rl and sample
class DIS_GENTRL(nn.Module): ''' GENTRL model ''' def __init__(self, enc, dec, latent_descr, feature_descr, tt_int=40, tt_type='usual', beta=0.01, gamma=0.1): super(DIS_GENTRL, self).__init__() self.enc = enc self.dec = dec self.num_latent = len(latent_descr) self.num_features = len(feature_descr) self.latent_descr = latent_descr self.feature_descr = feature_descr self.tt_int = tt_int self.tt_type = tt_type self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type) self.beta = beta self.gamma = gamma def get_elbo(self, x, y, host_rank): means, log_stds = torch.split( self.enc.encode(x).cuda(non_blocking=True), len(self.latent_descr), dim=1) latvar_samples = ( means + torch.randn_like(log_stds) * torch.exp(0.5 * log_stds)) rec_part = self.dec.weighted_forward(x, latvar_samples).mean() normal_distr_hentropies = (log(2 * pi) + 1 + log_stds).sum(dim=1) latent_dim = len(self.latent_descr) condition_dim = len(self.feature_descr) zy = torch.cat([latvar_samples, y], dim=1) # GPU measure point gpu_perform = self.nvidia_measure(host_rank) log_p_zy = self.lp.log_prob(zy) y_to_marg = latent_dim * [True] + condition_dim * [False] log_p_y = self.lp.log_prob(zy, marg=y_to_marg) z_to_marg = latent_dim * [False] + condition_dim * [True] log_p_z = self.lp.log_prob(zy, marg=z_to_marg) log_p_z_by_y = log_p_zy - log_p_y log_p_y_by_z = log_p_zy - log_p_z kldiv_part = (-normal_distr_hentropies - log_p_zy).mean() elbo = rec_part - self.beta * kldiv_part elbo = elbo + self.gamma * log_p_y_by_z.mean() return elbo, { 'loss': -elbo.detach().cpu().numpy(), 'rec': rec_part.detach().cpu().numpy(), 'kl': kldiv_part.detach().cpu().numpy(), 'log_p_y_by_z': log_p_y_by_z.mean().detach().cpu().numpy(), 'log_p_z_by_y': log_p_z_by_y.mean().detach().cpu().numpy() }, gpu_perform def nvidia_measure(self, host_rank): GPUs = GPU.getGPUs() if len(GPUs) > 1: gpu_host = int(host_rank) gpu = GPUs[gpu_host] else: gpu_host = int(os.environ['SM_CURRENT_HOST'].split('-')[1]) - 1 gpu = GPUs[0] gpu_perform = [ gpu_host, gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil * 100, gpu.memoryTotal ] return gpu_perform def save(self, folder_to_save='./'): if folder_to_save[-1] != '/': folder_to_save = folder_to_save + '/' torch.save(self.enc.state_dict(), folder_to_save + 'enc.model') torch.save(self.dec.state_dict(), folder_to_save + 'dec.model') torch.save(self.lp.state_dict(), folder_to_save + 'lp.model') pickle.dump(self.lp.order, open(folder_to_save + 'order.pkl', 'wb')) def load(self, folder_to_load='./'): if folder_to_load[-1] != '/': folder_to_load = folder_to_load + '/' order = pickle.load(open(folder_to_load + 'order.pkl', 'rb')) self.lp = LP(distr_descr=self.latent_descr + self.feature_descr, tt_int=self.tt_int, tt_type=self.tt_type, order=order) self.enc.load_state_dict(torch.load(folder_to_load + 'enc.model')) self.dec.load_state_dict(torch.load(folder_to_load + 'dec.model')) self.lp.load_state_dict(torch.load(folder_to_load + 'lp.model')) def sample(self, num_samples): z = self.lp.sample(num_samples, 50 * ['s'] + ['m']) smiles = self.dec.sample(50, z, argmax=False) return smiles