コード例 #1
0
def ts_from_list(A,
                 B,
                 C,
                 T,
                 initype,
                 sA=[],
                 sB=[],
                 sC=[],
                 stat='STAT',
                 name='NoName'):
    tsout = time_series.TimeSeriePoint()
    if len(sA) == 0:
        for a, b, c, t in zip(A, B, C, T):
            pt = time_series.Point(a, b, c, t, initype)
            tsout.add_point(pt)
    else:
        for a, b, c, t, sa, sb, sc in zip(A, B, C, T, sA, sB, sC):
            pt = time_series.Point(a, b, c, t, initype, sa, sb, sc)
            tsout.add_point(pt)
    tsout.stat = stat
    tsout.name = name
    if initype == 'ENU':
        tsout.boolENU = True
    else:
        tsout.boolENU = False
    return tsout
コード例 #2
0
def rotate_pt_cls_solo(tsattin,
                       pointin,
                       Rtype='R1',
                       xyzreftuple=([1, 0, 0], [0, 1, 0], [0, 0, 1]),
                       angtype='deg'):
    ''' ENTREE : tsattin : une TS d'attitude  (N angles)
                 pointin : UN Point en entrée

        SORTIE : une TSpoint de N points '''

    attlisttmp = tsattin.to_list()
    R = attlisttmp[0]
    P = attlisttmp[1]
    Y = attlisttmp[2]
    T = attlisttmp[3]

    A, B, C, _, _ = pointin()

    ptrotlis = XXX.rotate_points(R, P, Y, [np.array([A, B, C])], Rtype,
                                 xyzreftuple, angtype)

    ptrotlis = utils.shrink_listoflist(ptrotlis)

    tsout = time_series.TimeSeriePoint()

    for p, t in zip(ptrotlis, T):
        #print p
        tsout.add_point(
            time_series.Point(p[0], p[1], p[2], t, initype=pointin.initype))

    return tsout
コード例 #3
0
def mean_list_of_pts(ptslisin):
    """ useful for merge fct
    ONLY IMPLEMENTED FOR ENU coords for the moment """
    E = np.nanmean([p.E for p in ptslisin])
    N = np.nanmean([p.N for p in ptslisin])
    U = np.nanmean([p.U for p in ptslisin])
    sE = np.nanmean([p.sE for p in ptslisin])
    sN = np.nanmean([p.sN for p in ptslisin])
    sU = np.nanmean([p.sU for p in ptslisin])

    Tlis = [p.T for p in ptslisin]
    T = ((np.max(Tlis) - np.min(Tlis)) / 2.) + np.min(Tlis)
    pt = time_series.Point(E, N, U, T, 'ENU', sE, sN, sU, ptslisin[0].name)

    return pt
コード例 #4
0
def refENU_for_tslist(tslist_in, tsref_marker=0):
    """
    tsref_marker : indice of the reference time serie OR the 'all' keyword
    in this case all the time series mean position will be averaged
    """
    if tsref_marker == 'all':
        refENU_stk = []
        for ts in tslist_in:
            refENUtmp = ts.mean_posi()
            refENU_stk.append(refENUtmp)

        X = np.mean([renu.X for renu in refENU_stk])
        Y = np.mean([renu.Y for renu in refENU_stk])
        Z = np.mean([renu.Z for renu in refENU_stk])

        refENU = time_series.Point(X, Y, Z, 0, initype='XYZ')

    else:
        refENU = tslist_in[tsref_marker].mean_posi()

    for ts in tslist_in:
        ts.ENUcalc(refENU)

    return refENU