コード例 #1
0
    def __init__(self, a, f):
        """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

        self._a = float(a)
        self._f = float(f) if f <= 1 else 1.0 / f
        self._f1 = 1 - self._f
        self._e2 = self._f * (2 - self._f)
        self._ep2 = self._e2 / Math.sq(self._f1)  # e2 / (1 - e2)
        self._n = self._f / (2 - self._f)
        self._b = self._a * self._f1
        # authalic radius squared
        self._c2 = (
            Math.sq(self._a) + Math.sq(self._b) *
            (1 if self._e2 == 0 else
             (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else math.atan(
                 math.sqrt(-self._e2))) / math.sqrt(abs(self._e2)))) / 2
        # The sig12 threshold for "really short"
        self._etol2 = 0.01 * Geodesic.tol2_ / max(0.1, math.sqrt(abs(
            self._e2)))
        if not (Math.isfinite(self._a) and self._a > 0):
            raise ValueError("Major radius is not positive")
        if not (Math.isfinite(self._b) and self._b > 0):
            raise ValueError("Minor radius is not positive")
        self._A3x = range(Geodesic.nA3x_)
        self._C3x = range(Geodesic.nC3x_)
        self._C4x = range(Geodesic.nC4x_)
        self.A3coeff()
        self.C3coeff()
        self.C4coeff()
コード例 #2
0
ファイル: geodesic.py プロジェクト: GedLawrenson/sunflightmap
  def __init__(self, a, f):
    """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

    self._a = float(a)
    self._f = float(f) if f <= 1 else 1.0/f
    self._f1 = 1 - self._f
    self._e2 = self._f * (2 - self._f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self._f / ( 2 - self._f)
    self._b = self._a * self._f1
    # authalic radius squared
    self._c2 = (Math.sq(self._a) + Math.sq(self._b) *
                (1 if self._e2 == 0 else
                 (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
                  math.atan(math.sqrt(-self._e2))) /
                 math.sqrt(abs(self._e2))))/2
    # The sig12 threshold for "really short"
    self._etol2 = 0.01 * Geodesic.tol2_ / max(0.1, math.sqrt(abs(self._e2)))
    if not(Math.isfinite(self._a) and self._a > 0):
      raise ValueError("Major radius is not positive")
    if not(Math.isfinite(self._b) and self._b > 0):
      raise ValueError("Minor radius is not positive")
    self._A3x = range(Geodesic.nA3x_)
    self._C3x = range(Geodesic.nC3x_)
    self._C4x = range(Geodesic.nC4x_)
    self.A3coeff()
    self.C3coeff()
    self.C4coeff()
コード例 #3
0
ファイル: geodesic.py プロジェクト: Datathon-2020/cnv_map
  def __init__(self, a, f):
    """Construct a Geodesic object

    :param a: the equatorial radius of the ellipsoid in meters
    :param f: the flattening of the ellipsoid

    An exception is thrown if *a* or the polar semi-axis *b* = *a* (1 -
    *f*) is not a finite positive quantity.

    """

    self.a = float(a)
    """The equatorial radius in meters (readonly)"""
    self.f = float(f)
    """The flattening (readonly)"""
    self._f1 = 1 - self.f
    self._e2 = self.f * (2 - self.f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self.f / ( 2 - self.f)
    self._b = self.a * self._f1
    # authalic radius squared
    self._c2 = (Math.sq(self.a) + Math.sq(self._b) *
                (1 if self._e2 == 0 else
                 (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
                  math.atan(math.sqrt(-self._e2))) /
                 math.sqrt(abs(self._e2))))/2
    # The sig12 threshold for "really short".  Using the auxiliary sphere
    # solution with dnm computed at (bet1 + bet2) / 2, the relative error in
    # the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
    # (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
    # f and sig12, the max error occurs for lines near the pole.  If the old
    # rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
    # by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
    # Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
    # abs(f)) stops etol2 getting too large in the nearly spherical case.
    self._etol2 = 0.1 * Geodesic.tol2_ / math.sqrt( max(0.001, abs(self.f)) *
                                                    min(1.0, 1-self.f/2) / 2 )
    if not(Math.isfinite(self.a) and self.a > 0):
      raise ValueError("Equatorial radius is not positive")
    if not(Math.isfinite(self._b) and self._b > 0):
      raise ValueError("Polar semi-axis is not positive")
    self._A3x = list(range(Geodesic.nA3x_))
    self._C3x = list(range(Geodesic.nC3x_))
    self._C4x = list(range(Geodesic.nC4x_))
    self._A3coeff()
    self._C3coeff()
    self._C4coeff()
コード例 #4
0
ファイル: geodesic.py プロジェクト: yidongVSI/s2p
    def __init__(self, a, f):
        """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

        self._a = float(a)
        self._f = float(f) if f <= 1 else 1.0 / f
        self._f1 = 1 - self._f
        self._e2 = self._f * (2 - self._f)
        self._ep2 = self._e2 / Math.sq(self._f1)  # e2 / (1 - e2)
        self._n = self._f / (2 - self._f)
        self._b = self._a * self._f1
        # authalic radius squared
        self._c2 = (
            Math.sq(self._a) + Math.sq(self._b) *
            (1 if self._e2 == 0 else
             (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else math.atan(
                 math.sqrt(-self._e2))) / math.sqrt(abs(self._e2)))) / 2
        # The sig12 threshold for "really short".  Using the auxiliary sphere
        # solution with dnm computed at (bet1 + bet2) / 2, the relative error in
        # the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
        # (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
        # f and sig12, the max error occurs for lines near the pole.  If the old
        # rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
        # by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
        # Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
        # abs(f)) stops etol2 getting too large in the nearly spherical case.
        self._etol2 = 0.1 * Geodesic.tol2_ / math.sqrt(
            max(0.001, abs(self._f)) * min(1.0, 1 - self._f / 2) / 2)
        if not (Math.isfinite(self._a) and self._a > 0):
            raise ValueError("Major radius is not positive")
        if not (Math.isfinite(self._b) and self._b > 0):
            raise ValueError("Minor radius is not positive")
        self._A3x = list(range(Geodesic.nA3x_))
        self._C3x = list(range(Geodesic.nC3x_))
        self._C4x = list(range(Geodesic.nC4x_))
        self.A3coeff()
        self.C3coeff()
        self.C4coeff()
コード例 #5
0
ファイル: geodesic.py プロジェクト: Namorus/Antenna_Estimator
  def __init__(self, a, f):
    """Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.

    """

    self._a = float(a)
    self._f = float(f) if f <= 1 else 1.0/f
    self._f1 = 1 - self._f
    self._e2 = self._f * (2 - self._f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self._f / ( 2 - self._f)
    self._b = self._a * self._f1
    # authalic radius squared
    self._c2 = (Math.sq(self._a) + Math.sq(self._b) *
                (1 if self._e2 == 0 else
                 (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
                  math.atan(math.sqrt(-self._e2))) /
                 math.sqrt(abs(self._e2))))/2
    # The sig12 threshold for "really short".  Using the auxiliary sphere
    # solution with dnm computed at (bet1 + bet2) / 2, the relative error in
    # the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
    # (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
    # f and sig12, the max error occurs for lines near the pole.  If the old
    # rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
    # by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
    # Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
    # abs(f)) stops etol2 getting too large in the nearly spherical case.
    self._etol2 = 0.1 * Geodesic.tol2_ / math.sqrt( max(0.001, abs(self._f)) *
                                                    min(1.0, 1-self._f/2) / 2 )
    if not(Math.isfinite(self._a) and self._a > 0):
      raise ValueError("Major radius is not positive")
    if not(Math.isfinite(self._b) and self._b > 0):
      raise ValueError("Minor radius is not positive")
    self._A3x = list(range(Geodesic.nA3x_))
    self._C3x = list(range(Geodesic.nC3x_))
    self._C4x = list(range(Geodesic.nC4x_))
    self.A3coeff()
    self.C3coeff()
    self.C4coeff()