コード例 #1
0
    def plot_rmsd(self):
        processed_idxs = self.cached_workspace.keys()
        quad_domain_R = self.quad_domain_R

        num_idxs = len(processed_idxs)
        top1_rmsd = np.zeros(num_idxs)
        topN_rmsd = np.zeros(num_idxs)
        cutoff_R = 7
        topN_weight = np.exp(-np.arange(cutoff_R) / 2)
        topN_weight /= topN_weight.sum()

        for i, idx in enumerate(processed_idxs):
            ea = self.cryodata.euler_angles[idx][0:2]
            tiled_ea = np.tile(ea, (cutoff_R, 1))
            cphi_R = self.cached_workspace[idx]['cphi_R']
            sorted_indices_R = (-cphi_R).argsort()
            potential_R = quad_domain_R.dirs[sorted_indices_R[0:cutoff_R]]
            eas_of_dirs = geometry.genEA(potential_R)[:, 0:2]
            top1_rmsd[i] = np.sqrt(((ea[0:2] - eas_of_dirs[0])**2).mean())
            topN_rmsd[i] = (np.sqrt(((tiled_ea - eas_of_dirs) ** 2).mean(axis=1)) * topN_weight).sum()

        print("Slicing quadrature scheme, resolution {}, num of points {}".format(
            quad_domain_R.resolution, len(quad_domain_R.dirs)))
        print("Top 1 RMSD:", top1_rmsd.mean())
        print("Top {} RMSD: {}".format(cutoff_R, topN_rmsd.mean()))
コード例 #2
0
def gen_EAs_randomly(ea=None, num_inplane_angles=360):
    if ea is None:
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        ea = geometry.genEA(pt)[0]
    euler_angles = np.vstack([np.repeat(ea[0], num_inplane_angles),
                              np.repeat(ea[1], num_inplane_angles),
                              np.linspace(0, 2*np.pi, num_inplane_angles, endpoint=False)]).T
    return ea, euler_angles
コード例 #3
0
ファイル: shift_test.py プロジェクト: lqhuang/SOD-xfel
def shift_vis(model):
    N = model.shape[0]
    rad = 0.8
    kernel = 'lanczos'
    kernsize = 4

    xy, trunc_xy, truncmask = geometry.gencoords(N, 2, rad, True)
    N_T = trunc_xy.shape[0]
    premult = cryoops.compute_premultiplier(N,
                                            kernel=kernel,
                                            kernsize=kernsize)
    TtoF = sincint.gentrunctofull(N=N, rad=rad)

    fM = density.real_to_fspace(model)
    prefM = density.real_to_fspace(
        premult.reshape((1, 1, -1)) * premult.reshape(
            (1, -1, 1)) * premult.reshape((-1, 1, 1)) * model)

    pt = np.random.randn(3)
    pt /= np.linalg.norm(pt)
    psi = 2 * np.pi * np.random.rand()
    ea = geometry.genEA(pt)[0]
    ea[2] = psi
    print('project model for Euler angel: ({:.2f}, {:.2f}, {:.2f}) degree'.
          format(*np.rad2deg(ea)))

    rot_matrix = geometry.rotmat3D_EA(*ea)[:, 0:2]
    slop = cryoops.compute_projection_matrix([rot_matrix], N, kernel, kernsize,
                                             rad, 'rots')
    # trunc_slice = slop.dot(prefM.reshape((-1,)))
    trunc_slice = cryoem.getslices(prefM, slop)
    fourier_slice = TtoF.dot(trunc_slice).reshape(N, N)
    real_proj = density.fspace_to_real(fourier_slice)

    fig, axes = plt.subplots(4, 4, figsize=(12.8, 8))

    im_real = axes[0, 0].imshow(real_proj)
    im_fourier = axes[1, 0].imshow(np.log(np.abs(fourier_slice)))

    for i, ax in enumerate(axes[:, 1:].T):
        shift = np.random.randn(2) * (N / 4.0)
        S = cryoops.compute_shift_phases(shift.reshape(1, 2), N, rad)[0]

        shift_trunc_slice = S * trunc_slice
        shift_fourier_slice = TtoF.dot(shift_trunc_slice).reshape(N, N)
        shift_real_proj = density.fspace_to_real(shift_fourier_slice)

        ax[0].imshow(shift_real_proj)
        ax[1].imshow(np.log(np.abs(shift_fourier_slice)))
        ax[2].imshow(np.log(shift_fourier_slice.real))
        ax[3].imshow(np.log(shift_fourier_slice.imag))

    fig.tight_layout()
    plt.show()
コード例 #4
0
def gen_euler_angles(num_EAs):
    EAs = list()
    for i in range(num_EAs):
        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi
        EAs.append(np.rad2deg(EA))
        # print(EA)
    return EAs
コード例 #5
0
def gen_euler_angles(num_EAs):
    EAs = list()
    for i in range(num_EAs):
        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi
        EAs.append(np.rad2deg(EA))
        # print(EA)
    return EAs
コード例 #6
0
ファイル: premulter_test.py プロジェクト: lqhuang/SOD-xfel
def premult_test(model, kernel='lanczos', kernsize=6):
    if isinstance(model, str):
        M = mrc.readMRC(model)
    elif isinstance(model, np.ndarray):
        M = model

    shape = np.asarray(M.shape)
    assert (shape - shape.mean()).sum() == 0

    N = M.shape[0]
    rad = 0.6

    premult = cryoops.compute_premultiplier(N, kernel, kernsize)
    TtoF = sincint.gentrunctofull(N=N, rad=rad)
    premulter =   premult.reshape((1, 1, -1)) \
                * premult.reshape((1, -1, 1)) \
                * premult.reshape((-1, 1, 1))

    fM = density.real_to_fspace(M)
    prefM = density.real_to_fspace(premulter * M)

    pt = np.random.randn(3)
    pt /= np.linalg.norm(pt)
    psi = 2 * np.pi * np.random.rand()
    ea = geometry.genEA(pt)[0]
    ea[2] = psi
    print('project model for Euler angel: ({:.2f}, {:.2f}, {:.2f}) degree'.
          format(*np.rad2deg(ea)))

    rot_matrix = geometry.rotmat3D_EA(*ea)[:, 0:2]
    slop = cryoops.compute_projection_matrix([rot_matrix], N, kernel, kernsize,
                                             rad, 'rots')
    trunc_slice = slop.dot(fM.reshape((-1, )))
    premult_trunc_slice = slop.dot(prefM.reshape((-1, )))
    proj = density.fspace_to_real(TtoF.dot(trunc_slice).reshape(N, N))
    premult_proj = density.fspace_to_real(
        TtoF.dot(premult_trunc_slice).reshape(N, N))

    fig, ax = plt.subplots(1, 3, figsize=(14.4, 4.8))
    im_proj = ax[0].imshow(proj, origin='lower')
    fig.colorbar(im_proj, ax=ax[0])
    ax[0].set_title('no premulter')
    im_pre = ax[1].imshow(premult_proj, origin='lower')
    fig.colorbar(im_pre, ax=ax[1])
    ax[1].set_title('with premulter')
    im_diff = ax[2].imshow(proj - premult_proj, origin='lower')
    fig.colorbar(im_diff, ax=ax[2])
    ax[2].set_title('difference of two image')
    fig.tight_layout()
    plt.show()
コード例 #7
0
ファイル: main.py プロジェクト: lqhuang/orientation-python
def gen_exp_samples(num_EAs, phantompath, data_dst):
    EAs = list()
    for i in range(num_EAs):
        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi
        EAs.append(np.rad2deg(EA))

    # EAs_grid = gen_ref_EAs_grid()
    # grid_size = EAs_grid.shape[0]
    # EAs = EAs_grid[np.random.randint(0, grid_size, size=num_EAs)]
    ang_star = data_dst + '_gen.star'
    star.easy_writeSTAR_relion(ang_star, EAs=EAs)
    projs_star, projs_mrcs = relion.project(phantompath, data_dst,
                                            ang=ang_star)
    return projs_star, projs_mrcs
コード例 #8
0
def gen_exp_samples(num_EAs, phantompath, data_dst):
    EAs = list()
    for i in range(num_EAs):
        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi
        EAs.append(np.rad2deg(EA))

    # EAs_grid = gen_ref_EAs_grid()
    # grid_size = EAs_grid.shape[0]
    # EAs = EAs_grid[np.random.randint(0, grid_size, size=num_EAs)]
    ang_star = data_dst + '_gen.star'
    star.easy_writeSTAR_relion(ang_star, EAs=EAs)
    projs_star, projs_mrcs = relion.project(phantompath,
                                            data_dst,
                                            ang=ang_star)
    return projs_star, projs_mrcs
コード例 #9
0
    def __init__(self, model, dataset_params, ctf_params,
                 interp_params={'kern': 'lanczos', 'kernsize': 4.0, 'zeropad': 0, 'dopremult': True},
                 load_cache=True):

        self.dataset_params = dataset_params

        if model is not None:
            # assert False
            assert isinstance(model, np.ndarray), "Unexpected data type for input model"

            self.num_pixels = model.shape[0]
            N = self.num_pixels
            self.num_images = dataset_params['num_images']
            assert self.num_images > 1, "it's better to make num_images larger than 1."
            self.pixel_size = float(dataset_params['pixel_size'])
            euler_angles = dataset_params['euler_angles']
            self.is_sym = get_symmetryop(dataset_params.get('symmetry', None))

            if euler_angles is None and self.is_sym is None:
                pt = np.random.randn(self.num_images, 3)
                pt /= np.linalg.norm(pt, axis=1, keepdims=True)
                euler_angles = geometry.genEA(pt)
                euler_angles[:, 2] = 2 * np.pi * np.random.rand(self.num_images)
            elif euler_angles is None and self.is_sym is not None:
                euler_angles = np.zeros((self.num_images, 3))
                for i, ea in enumerate(euler_angles):
                    while True:
                        pt = np.random.randn(3)
                        pt /= np.linalg.norm(pt)
                        if self.is_sym.in_asymunit(pt.reshape(-1, 3)):
                            break
                    ea[0:2] = geometry.genEA(pt)[0][0:2]
                    ea[2] = 2 * np.pi * np.random.rand()
            self.euler_angles = euler_angles.reshape((-1, 3))

            if ctf_params is not None:
                self.use_ctf = True
                ctf_map = ctf.compute_full_ctf(None, N, ctf_params['psize'],
                    ctf_params['akv'], ctf_params['cs'], ctf_params['wgh'],
                    ctf_params['df1'], ctf_params['df2'], ctf_params['angast'],
                    ctf_params['dscale'], ctf_params.get('bfactor', 500))
                self.ctf_params = copy(ctf_params)
                if 'bfactor' in self.ctf_params.keys():
                    self.ctf_params.pop('bfactor')
            else:
                self.use_ctf = False
                ctf_map = np.ones((N**2,), dtype=density.real_t)

            kernel = 'lanczos'
            ksize = 6
            rad = 0.95
            # premult = cryoops.compute_premultiplier(N, kernel, ksize)
            TtoF = sincint.gentrunctofull(N=N, rad=rad)
            base_coords = geometry.gencoords(N, 2, rad)
            # premulter =   premult.reshape((1, 1, -1)) \
            #             * premult.reshape((1, -1, 1)) \
            #             * premult.reshape((-1, 1, 1))
            # fM = density.real_to_fspace(premulter * model)
            fM = model

            # if load_cache:
            #     try:
            print("Generating Dataset ... :")
            tic = time.time()
            imgdata = np.empty((self.num_images, N, N), dtype=density.real_t)
            for i, ea in zip(range(self.num_images), self.euler_angles):
                R = geometry.rotmat3D_EA(*ea)[:, 0:2]
                slop = cryoops.compute_projection_matrix(
                    [R], N, kernel, ksize, rad, 'rots')
                # D = slop.dot(fM.reshape((-1,)))
                rotated_coords = R.dot(base_coords.T).T + int(N/2)
                D = interpn((np.arange(N),) * 3, fM, rotated_coords)
                np.maximum(D, 0.0, out=D)
                
                intensity = ctf_map.reshape((N, N)) * TtoF.dot(D).reshape((N, N))
                np.maximum(1e-8, intensity, out=intensity)
                intensity = np.float_( np.random.poisson(intensity) )
                imgdata[i] = np.require(intensity, dtype=density.real_t)
            self.imgdata = imgdata
            print("  cost {} seconds.".format(time.time()-tic))

            self.set_transform(interp_params)
            # self.prep_processing()

        else:
            euler_angles = []    
            with open(self.dataset_params['gtpath']) as par:
                par.readline()
                # 'C                 PHI      THETA        PSI        SHX        SHY       FILM        DF1        DF2     ANGAST'
                while True:
                    try:
                        line = par.readline().split()
                        euler_angles.append([float(line[1]), float(line[2]), float(line[3])])
                    except Exception:
                        break
            self.euler_angles = np.deg2rad(np.asarray(euler_angles))
            num_images = self.dataset_params.get('num_images', 200)
            imgdata = mrc.readMRCimgs(self.dataset_params['inpath'], 0, num_images)

            self.imgdata = np.transpose(imgdata, axes=(2, 0, 1))

            self.num_images = self.imgdata.shape[0]
            self.num_pixels = self.imgdata.shape[1]
            N = self.num_pixels

            self.pixel_size = self.dataset_params['resolution']
            self.is_sym = self.dataset_params.get('symmetry', None)

            self.use_ctf = False
            ctf_map = np.ones((N**2,), dtype=density.real_t)
            self.set_transform(interp_params)
コード例 #10
0
ファイル: genphantomdata.py プロジェクト: lqhuang/SOD-xfel
def genphantomdata(N_D, phantompath):
    mscope_params = {
        'akv': 200,
        'wgh': 0.07,
        'cs': 2.0,
        'psize': 3.0,
        'bfactor': 500.0
    }

    M = mrc.readMRC(phantompath)

    N = M.shape[0]
    rad = 0.95
    M_totalmass = 1000000
    # M_totalmass = 1500000
    kernel = 'lanczos'
    ksize = 6

    tic = time.time()

    N_D = int(N_D)
    N = int(N)
    rad = float(rad)
    psize = mscope_params['psize']
    bfactor = mscope_params['bfactor']
    M_totalmass = float(M_totalmass)

    ctfparfile = 'particle/examplectfs.par'
    srcctf_stack = CTFStack(ctfparfile, mscope_params)
    genctf_stack = GeneratedCTFStack(
        mscope_params, parfields=['PHI', 'THETA', 'PSI', 'SHX', 'SHY'])

    TtoF = sincint.gentrunctofull(N=N, rad=rad)
    Cmap = np.sort(
        np.random.random_integers(0,
                                  srcctf_stack.get_num_ctfs() - 1, N_D))

    cryoem.window(M, 'circle')
    M[M < 0] = 0
    if M_totalmass is not None:
        M *= M_totalmass / M.sum()

    # oversampling
    oversampling_factor = 3
    psize = psize * oversampling_factor
    V = density.real_to_fspace_with_oversampling(M, oversampling_factor)
    fM = V.real**2 + V.imag**2

    # mrc.writeMRC('particle/EMD6044_fM_totalmass_{}_oversampling_{}.mrc'.format(str(int(M_totalmass)).zfill(5), oversampling_factor), fM, psz=psize)

    print("Generating data...")
    sys.stdout.flush()
    imgdata = np.empty((N_D, N, N), dtype=density.real_t)

    pardata = {'R': []}

    prevctfI = None
    coords = geometry.gencoords(N, 2, rad)
    slicing_func = RegularGridInterpolator((np.arange(N), ) * 3,
                                           fM,
                                           bounds_error=False,
                                           fill_value=0.0)
    for i, srcctfI in enumerate(Cmap):
        ellapse_time = time.time() - tic
        remain_time = float(N_D - i) * ellapse_time / max(i, 1)
        print("\r%.2f Percent.. (Elapsed: %s, Remaining: %s)" %
              (i / float(N_D) * 100.0, format_timedelta(ellapse_time),
               format_timedelta(remain_time)),
              end='')
        sys.stdout.flush()

        # Get the CTF for this image
        cCTF = srcctf_stack.get_ctf(srcctfI)
        if prevctfI != srcctfI:
            genctfI = genctf_stack.add_ctf(cCTF)
            C = cCTF.dense_ctf(N, psize, bfactor).reshape((N, N))
            prevctfI = srcctfI

        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi

        # Rotate coordinates and get slice image by interpolation
        R = geometry.rotmat3D_EA(*EA)[:, 0:2]
        rotated_coords = R.dot(coords.T).T + int(N / 2)
        slice_data = slicing_func(rotated_coords)
        intensity = TtoF.dot(slice_data)
        np.maximum(intensity, 0.0, out=intensity)

        # Add poisson noise
        img = np.float_(np.random.poisson(intensity.reshape(N, N)))
        np.maximum(1e-8, img, out=img)
        imgdata[i] = np.require(img, dtype=density.real_t)

        genctf_stack.add_img(genctfI,
                             PHI=EA[0] * 180.0 / np.pi,
                             THETA=EA[1] * 180.0 / np.pi,
                             PSI=EA[2] * 180.0 / np.pi,
                             SHX=0.0,
                             SHY=0.0)

        pardata['R'].append(R)

    print("\n\rDone in ", time.time() - tic, " seconds.")
    return imgdata, genctf_stack, pardata, mscope_params
コード例 #11
0
ファイル: data_previewer.py プロジェクト: lqhuang/SOD-xfel
def gen_slices(model_files, fspace=False, log_scale=True):
    for model in model_files:
        M = mrc.readMRC(model)
        N = M.shape[0]
        print('model size: {0}x{0}x{0}'.format(N))

        oversampling_factor = 3
        zeropad = oversampling_factor - 1  # oversampling factor = zeropad + 1
        psize = 3.0 * oversampling_factor
        beamstop_freq = 0.003
        mask = geometry.gen_dense_beamstop_mask(N, 2, beamstop_freq, psize=psize)
        # mask = None

        if fspace:
            fM = M
        else:
            M_totalmass = 1000000
            M *= M_totalmass / M.sum()

            V = density.real_to_fspace_with_oversampling(M, oversampling_factor)
            fM = V.real ** 2 + V.imag ** 2

            mask_3D = geometry.gen_dense_beamstop_mask(N, 3, beamstop_freq, psize=psize)
            fM *= mask_3D
            mrc.writeMRC('particle/{}_fM_totalmass_{}_oversampling_{}.mrc'.format(
                os.path.splitext(os.path.basename(model))[0], str(int(M_totalmass)).zfill(5), oversampling_factor
                ), fM, psz=psize)

        slicing_func = RegularGridInterpolator([np.arange(N),]*3, fM, bounds_error=False, fill_value=0.0)
        coords = geometry.gencoords_base(N, 2)

        fig, axes = plt.subplots(3, 3, figsize=(12.9, 9.6))
        for i, ax in enumerate(axes.flat):
            row, col = np.unravel_index(i, (3, 3))
            
            # Randomly generate the viewing direction/shift
            pt = np.random.randn(3)
            pt /= np.linalg.norm(pt)
            psi = 2 * np.pi * np.random.rand()
            EA = geometry.genEA(pt)[0]
            EA[2] = psi
            R = geometry.rotmat3D_EA(*EA)[:, 0:2]
            rotated_coords = R.dot(coords.T).T + int(N/2)
            img = slicing_func(rotated_coords).reshape(N, N)
            img = np.require(np.random.poisson(img), dtype=np.float32)

            if log_scale:
                img = np.log(np.maximum(img, 0))
            if mask is not None:
                img *= mask

            im = ax.imshow(img, origin='lower')  # cmap='Greys'
            ticks = [0, int(N/4.0), int(N/2.0), int(N*3.0/4.0), int(N-1)]
            if row == 2:
                ax.set_xticks(ticks)
            else:
                ax.set_xticks([])
            if col == 0:
                ax.set_yticks(ticks)
            else:
                ax.set_yticks([])
            fig.colorbar(im, ax=ax)

        # fig.subplots_adjust(right=0.8)
        # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
        # fig.colorbar(im, cax=cbar_ax)
        fig.suptitle('simulated experimental data of XFEL for {}'.format(model))
        # fig.tight_layout()
    plt.show()
コード例 #12
0
ファイル: genphantomdata.py プロジェクト: lqhuang/SOD-cryoem
def genphantomdata(N_D, phantompath, ctfparfile):
    # mscope_params = {'akv': 200, 'wgh': 0.07,
    #                  'cs': 2.0, 'psize': 2.8, 'bfactor': 500.0}
    mscope_params = {'akv': 200, 'wgh': 0.07,
                     'cs': 2.0, 'psize': 3.0, 'bfactor': 500.0}
    
    M = mrc.readMRC(phantompath)

    N = M.shape[0]
    rad = 0.95
    shift_sigma = 3.0
    sigma_noise = 25.0
    M_totalmass = 80000
    kernel = 'lanczos'
    ksize = 6

    premult = cryoops.compute_premultiplier(N, kernel, ksize)

    tic = time.time()

    N_D = int(N_D)
    N = int(N)
    rad = float(rad)
    psize = mscope_params['psize']
    bfactor = mscope_params['bfactor']
    shift_sigma = float(shift_sigma)
    sigma_noise = float(sigma_noise)
    M_totalmass = float(M_totalmass)

    srcctf_stack = CTFStack(ctfparfile, mscope_params)
    genctf_stack = GeneratedCTFStack(mscope_params, parfields=[
                                     'PHI', 'THETA', 'PSI', 'SHX', 'SHY'])

    TtoF = sincint.gentrunctofull(N=N, rad=rad)
    Cmap = np.sort(np.random.random_integers(
        0, srcctf_stack.get_num_ctfs() - 1, N_D))

    cryoem.window(M, 'circle')
    M[M < 0] = 0
    if M_totalmass is not None:
        M *= M_totalmass / M.sum()

    V = density.real_to_fspace(
        premult.reshape((1, 1, -1)) * premult.reshape((1, -1, 1)) * premult.reshape((-1, 1, 1)) * M)

    print("Generating data...")
    sys.stdout.flush()
    imgdata = np.empty((N_D, N, N), dtype=density.real_t)

    pardata = {'R': [], 't': []}

    prevctfI = None
    for i, srcctfI in enumerate(Cmap):
        ellapse_time = time.time() - tic
        remain_time = float(N_D - i) * ellapse_time / max(i, 1)
        print("\r%.2f Percent.. (Elapsed: %s, Remaining: %s)" % (i / float(N_D)
                                                                 * 100.0, format_timedelta(ellapse_time), format_timedelta(remain_time)))
        sys.stdout.flush()

        # Get the CTF for this image
        cCTF = srcctf_stack.get_ctf(srcctfI)
        if prevctfI != srcctfI:
            genctfI = genctf_stack.add_ctf(cCTF)
            C = cCTF.dense_ctf(N, psize, bfactor).reshape((N**2,))
            prevctfI = srcctfI

        # Randomly generate the viewing direction/shift
        pt = np.random.randn(3)
        pt /= np.linalg.norm(pt)
        psi = 2 * np.pi * np.random.rand()
        EA = geometry.genEA(pt)[0]
        EA[2] = psi
        shift = np.random.randn(2) * shift_sigma

        R = geometry.rotmat3D_EA(*EA)[:, 0:2]
        slop = cryoops.compute_projection_matrix(
            [R], N, kernel, ksize, rad, 'rots')
        S = cryoops.compute_shift_phases(shift.reshape((1, 2)), N, rad)[0]

        D = slop.dot(V.reshape((-1,)))
        D *= S

        imgdata[i] = density.fspace_to_real((C * TtoF.dot(D)).reshape((N, N))) + np.require(
            np.random.randn(N, N) * sigma_noise, dtype=density.real_t)

        genctf_stack.add_img(genctfI,
                             PHI=EA[0] * 180.0 / np.pi, THETA=EA[1] * 180.0 / np.pi, PSI=EA[2] * 180.0 / np.pi,
                             SHX=shift[0], SHY=shift[1])

        pardata['R'].append(R)
        pardata['t'].append(shift)

    print("\rDone in ", time.time() - tic, " seconds.")
    return imgdata, genctf_stack, pardata, mscope_params
コード例 #13
0
def calculate_nside_resolution():
    NSIDE = [2**i for i in range(11)]
    print(
        'given nside | number of pixels | resolution (pixel size in degree) | Maximum angular distance (degree) | pixel area (in square degrees)'
    )
    for nside in NSIDE:
        npix = hp.nside2npix(nside)
        resol = np.rad2deg(hp.nside2resol(nside))
        maxrad = np.rad2deg(hp.max_pixrad(nside))
        pixarea = hp.nside2pixarea(nside, degrees=True)
        print(
            '{0:^11} | {1:^16} | {2:^33.4f} | {3:^33.4f} | {4:^30.6f}'.format(
                nside, npix, resol, maxrad, pixarea))


if __name__ == '__main__':
    calculate_nside_resolution()
    # generate random distribution of Euler angles
    v = np.random.randn(100, 3)
    v = v / np.linalg.norm(v, axis=1).repeat(3).reshape(-1, 3)
    EA = geometry.genEA(v)
    phi = EA[:, 0]
    # phi += 2 * np.pi
    theta = EA[:, 1]
    # visulization
    hp.mollview()
    hp.visufunc.projscatter(theta, phi, 'r.')
    hp.graticule()
    plt.show()
コード例 #14
0
#     512     |     3145728      |              0.1145               |              0.1196               |            0.013114
#    1024     |     12582912     |              0.0573               |              0.0598               |            0.003278

def calculate_nside_resolution():
    NSIDE = [2**i for i in range(11)]
    print('given nside | number of pixels | resolution (pixel size in degree) | Maximum angular distance (degree) | pixel area (in square degrees)')
    for nside in NSIDE:
        npix = hp.nside2npix(nside)
        resol = np.rad2deg(hp.nside2resol(nside))
        maxrad = np.rad2deg(hp.max_pixrad(nside))
        pixarea = hp.nside2pixarea(nside, degrees=True)
        print('{0:^11} | {1:^16} | {2:^33.4f} | {3:^33.4f} | {4:^30.6f}'.format(nside, npix, resol, maxrad, pixarea))


if __name__ == '__main__':

    calculate_nside_resolution()

    # generate random distribution of Euler angles
    v = np.random.randn(100,3)
    v = v  / np.linalg.norm(v, axis=1).repeat(3).reshape(-1,3)
    EA = geometry.genEA(v)
    phi = EA[:, 0]
    # phi += 2 * np.pi
    theta = EA[:, 1]
    # visulization
    hp.mollview()
    hp.visufunc.projscatter(theta, phi, 'r.')
    hp.graticule()
    plt.show()
コード例 #15
0
def plot_rmsd(cached_cphi, euler_angles, quad_domain_R, ac=0):
    processed_idxs = cached_cphi.keys()
    quad_domain_R = quad_domain_R

    num_idxs = len(processed_idxs)
    top1_rmsd = np.zeros(num_idxs)
    topN_rmsd = np.zeros(num_idxs)
    topN_C_rmsd = np.zeros(num_idxs)
    cutoff_R = 5
    topN_weight = np.exp(-np.arange(cutoff_R) / 2)
    topN_weight /= topN_weight.sum()

    for i, idx in enumerate(processed_idxs):
        ea = euler_angles[idx][0:2]
        tiled_ea = np.tile(ea, (cutoff_R, 1))
        cphi_R = cached_cphi[idx]['cphi_R']
        sorted_indices_R = (-cphi_R).argsort()
        potential_R = quad_domain_R.dirs[sorted_indices_R[0:cutoff_R]]
        eas_of_dirs = geometry.genEA(potential_R)[:, 0:2]
        if ac == 0:
            top1_rmsd[i] = np.sqrt(((ea[0:2] - eas_of_dirs[0])**2).mean())
            topN_rmsd[i] = (np.sqrt(
                ((tiled_ea - eas_of_dirs)**2).mean(axis=1)) *
                            topN_weight).sum()
            topN_C_rmsd[i] = (np.sqrt(
                ((tiled_ea - eas_of_dirs)**2).mean(axis=1))).min()
        else:
            top1_dir = eas_of_dirs[0]
            top1_dir_chiral = np.pi + np.asarray(
                [+1.0, -1.0]) * eas_of_dirs[0]  # 手性对称位置的坐标
            top1_dir_chiral[0] -= (top1_dir_chiral[0] >
                                   2 * np.pi) * 2 * np.pi  # 超过 2pi 的地方减去 2pi

            first = np.sqrt(((ea[0:2] - top1_dir)**2).mean())
            first_chiral = np.sqrt(((ea[0:2] - top1_dir_chiral)**2).mean())
            top1_rmsd[i] = np.min([first, first_chiral])

            topN_rmsd[i] = (np.sqrt(
                ((tiled_ea - eas_of_dirs)**2).mean(axis=1)) *
                            topN_weight).sum()

            eas_of_dirs_chiral = (np.pi + np.tile([+1.0, -1.0],
                                                  (cutoff_R, 1)) * eas_of_dirs)
            eas_of_dirs_chiral[:, 0] -= (eas_of_dirs_chiral[:, 0] >
                                         2 * np.pi) * 2 * np.pi

            topN_C = np.sqrt(((tiled_ea - eas_of_dirs)**2).mean(axis=1))
            topN_C_chiral = np.sqrt(
                ((tiled_ea - eas_of_dirs_chiral)**2).mean(axis=1))

            topN_C_rmsd[i] = (np.minimum(topN_C, topN_C_chiral)).min()

    print("Slicing quadrature scheme, resolution {}, num of points {}".format(
        quad_domain_R.resolution, len(quad_domain_R.dirs)))
    print("Top 1 RMSD:", top1_rmsd.mean())
    print("Top {} RMSD: {}".format(cutoff_R, topN_rmsd.mean()))
    print("Top {}:RMSD {}".format(cutoff_R, topN_C_rmsd.mean()))

    # plt.hist(np.rad2deg(topN_C_rmsd))
    # plt.show()

    return top1_rmsd.mean(), topN_rmsd.mean(), topN_C_rmsd.mean()