コード例 #1
0
    def tait_bryan_angles_from_quaternion_intrinsic_zyx(self, quaternion):
        assert self.n == 3, ('The quaternion representation'
                             ' and the Tait-Bryan angles representation'
                             ' do not exist'
                             ' for rotations in %d dimensions.' % self.n)
        quaternion = gs.to_ndarray(quaternion, to_ndim=2)

        w, x, y, z = gs.hsplit(quaternion, 4)
        angle_1 = gs.arctan2(y * z + w * x, 1. / 2. - (x**2 + y**2))
        angle_2 = gs.arcsin(-2. * (x * z - w * y))
        angle_3 = gs.arctan2(x * y + w * z, 1. / 2. - (y**2 + z**2))
        tait_bryan_angles = gs.concatenate([angle_3, angle_2, angle_1], axis=1)
        return tait_bryan_angles
コード例 #2
0
    def tait_bryan_angles_from_quaternion_intrinsic_xyz(self, quaternion):
        assert self.n == 3, ('The quaternion representation'
                             ' and the Tait-Bryan angles representation'
                             ' do not exist'
                             ' for rotations in %d dimensions.' % self.n)
        quaternion = gs.to_ndarray(quaternion, to_ndim=2)

        w, x, y, z = gs.hsplit(quaternion, 4)
        angle_3 = gs.arctan2(2. * (x * y + w * z),
                             w * w + x * x - y * y - z * z)
        angle_2 = gs.arcsin(-2. * (x * z - w * y))
        angle_1 = gs.arctan2(2. * (y * z + w * x),
                             w * w - x * x - y * y + z * z)
        tait_bryan_angles = gs.concatenate([angle_1, angle_2, angle_3], axis=1)
        return tait_bryan_angles
コード例 #3
0
    def extrinsic_to_spherical(self, point_extrinsic):
        """Convert point from extrinsic to spherical coordinates.

        Convert from the extrinsic coordinates, i.e. embedded in Euclidean
        space of dim 3 to spherical coordinates in the hypersphere.
        Spherical coordinates are defined from the north pole, i.e.
        angles [0., 0.] correspond to point [0., 0., 1.].
        Only implemented in dimension 2.

        Parameters
        ----------
        point_extrinsic : array-like, shape=[..., dim]
            Point on the sphere, in extrinsic coordinates.

        Returns
        -------
        point_spherical : array_like, shape=[..., dim + 1]
            Point on the sphere, in spherical coordinates relative to the
            north pole.
        """
        if self.dim != 2:
            raise NotImplementedError(
                "The conversion from to extrinsic coordinates "
                "spherical coordinates is implemented"
                " only in dimension 2.")

        theta = gs.arccos(point_extrinsic[..., -1])
        x = point_extrinsic[..., 0]
        y = point_extrinsic[..., 1]
        phi = gs.arctan2(y, x)
        phi = gs.where(phi < 0, phi + 2 * gs.pi, phi)
        return gs.stack([theta, phi], axis=-1)
コード例 #4
0
def grad(y_pred, y_true,
         metric=SO3.bi_invariant_metric,
         representation='vector'):
    """Closed-form for the gradient of pose_loss.

    Parameters
    ----------
    y_pred : array-like
        Prediction on SO(3).
    y_true : array-like
        Ground-truth on SO(3).
    metric : RiemannianMetric
        Metric used to compute the loss and gradient.
    representation : str, {'vector', 'matrix'}
        Representation chosen for points in SE(3).

    Returns
    -------
    lie_grad : array-like
        Tangent vector at point y_pred.
    """
    y_pred = gs.expand_dims(y_pred, axis=0)
    y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        lie_grad = lie_group.grad(y_pred, y_true, SO3, metric)

    if representation == 'quaternion':
        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm ** 2 + quat_scalar ** 2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = - 2 * quat_vec / (quat_sq_norm)
        differential_scalar = gs.to_ndarray(differential_scalar, to_ndim=2)
        differential_scalar = gs.transpose(differential_scalar)

        differential_vec = (2 * (quat_scalar / quat_sq_norm
                                 - 2 * quat_arctan2 / quat_vec_norm)
                            * (gs.einsum('ni,nj->nij', quat_vec, quat_vec)
                               / quat_vec_norm ** 2)
                            + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))
        differential_vec = gs.squeeze(differential_vec)

        differential = gs.concatenate(
            [differential_scalar, differential_vec],
            axis=1)

        y_pred = SO3.rotation_vector_from_quaternion(y_pred)
        y_true = SO3.rotation_vector_from_quaternion(y_true)

        lie_grad = lie_group.grad(y_pred, y_true, SO3, metric)

        lie_grad = gs.matmul(lie_grad, differential)

    lie_grad = gs.squeeze(lie_grad, axis=0)
    return lie_grad
コード例 #5
0
    def tait_bryan_angles_from_quaternion_intrinsic_zyx(quaternion):
        """Convert quaternion to tait bryan representation of order zyx.

        Parameters
        ----------
        quaternion : array-like, shape=[..., 4]

        Returns
        -------
        tait_bryan_angles : array-like, shape=[..., 3]
        """
        w, x, y, z = gs.hsplit(quaternion, 4)
        angle_1 = gs.arctan2(y * z + w * x, 1. / 2. - (x**2 + y**2))
        angle_2 = gs.arcsin(-2. * (x * z - w * y))
        angle_3 = gs.arctan2(x * y + w * z, 1. / 2. - (y**2 + z**2))
        tait_bryan_angles = gs.concatenate([angle_1, angle_2, angle_3], axis=1)
        return tait_bryan_angles
コード例 #6
0
def grad(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """
    Closed-form for the gradient of pose_loss.

    :return: tangent vector at point y_pred.
    """
    if gs.ndim(y_pred) == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if gs.ndim(y_true) == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SE3, metric)

    if representation == 'quaternion':

        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred_pose = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true_pose = gs.hstack([y_true_rot_vec, y_true[:, 4:]])
        grad = lie_group.grad(y_pred_pose, y_true_pose, SE3, metric)

        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:4]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm**2 + quat_scalar**2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = -2 * quat_vec / (quat_sq_norm)
        differential_vec = (
            2 *
            (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) *
            (gs.einsum('ni,nj->nij', quat_vec, quat_vec) / quat_vec_norm *
             quat_vec_norm) + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        differential_scalar_t = gs.transpose(differential_scalar, axes=(1, 0))

        upper_left_block = gs.hstack(
            (differential_scalar_t, differential_vec[0]))
        upper_right_block = gs.zeros((3, 3))
        lower_right_block = gs.eye(3)
        lower_left_block = gs.zeros((3, 4))

        top = gs.hstack((upper_left_block, upper_right_block))
        bottom = gs.hstack((lower_left_block, lower_right_block))

        differential = gs.vstack((top, bottom))
        differential = gs.expand_dims(differential, axis=0)

        grad = gs.einsum('ni,nij->ni', grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
コード例 #7
0
def grad(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """
    Closed-form for the gradient of pose_loss.

    :return: tangent vector at point y_pred.
    """
    if y_pred.ndim == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if y_true.ndim == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SE3, metric)

    if representation == 'quaternion':

        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred_pose = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true_pose = gs.hstack([y_true_rot_vec, y_true[:, 4:]])
        grad = lie_group.grad(y_pred_pose, y_true_pose, SE3, metric)

        differential = gs.zeros((1, 6, 7))

        upper_left_block = gs.zeros((1, 3, 4))
        lower_right_block = gs.zeros((1, 3, 3))
        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:4]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm**2 + quat_scalar**2
        # TODO(nina): check that this sq norm is 1?

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = -2 * quat_vec / (quat_sq_norm)
        differential_vec = (
            2 *
            (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) *
            gs.outer(quat_vec, quat_vec) / quat_vec_norm**2 +
            2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        upper_left_block[0, :, :1] = differential_scalar.transpose()
        upper_left_block[0, :, 1:] = differential_vec
        lower_right_block[0, :, :] = gs.eye(3)

        differential[0, :3, :4] = upper_left_block
        differential[0, 3:, 4:] = lower_right_block

        grad = gs.matmul(grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
コード例 #8
0
ファイル: visualization.py プロジェクト: cshewmake2/geomstats
    def convert_to_polar_coordinates(self, points):
        """Assign polar coordinates to given pre-shapes."""
        aligned_points = S32.align(points, self.pole)
        speeds = S32.ambient_metric.log(aligned_points, self.pole)

        coords_theta = gs.arctan2(
            S32.ambient_metric.inner_product(speeds, self.na),
            S32.ambient_metric.inner_product(speeds, self.ua))
        coords_phi = 2. * S32.ambient_metric.dist(self.pole, aligned_points)

        return coords_theta, coords_phi
コード例 #9
0
ファイル: visualization.py プロジェクト: cshewmake2/geomstats
    def convert_to_polar_coordinates(self, points):
        """Assign polar coordinates to given pre-shapes."""
        aligned_points = S33.align(points, self.centre)
        aligned_points2d = aligned_points[..., :, :2]
        speeds = S32.ambient_metric.log(aligned_points2d, self.pole)

        coords_r = S32.ambient_metric.dist(self.pole, aligned_points2d)
        coords_theta = gs.arctan2(
            S32.ambient_metric.inner_product(speeds, self.na),
            S32.ambient_metric.inner_product(speeds, self.ua))

        return coords_r, coords_theta
コード例 #10
0
    def tait_bryan_angles_from_quaternion_intrinsic_xyz(quaternion):
        """Convert quaternion to tait bryan representation of order xyz.

        Parameters
        ----------
        quaternion : array-like, shape=[..., 4]

        Returns
        -------
        tait_bryan_angles : array-like, shape=[..., 3]
        """
        w, x, y, z = gs.hsplit(quaternion, 4)

        angle_1 = gs.arctan2(2. * (-x * y + w * z),
                             w * w + x * x - y * y - z * z)
        angle_2 = gs.arcsin(2 * (x * z + w * y))
        angle_3 = gs.arctan2(2. * (-y * z + w * x),
                             w * w + z * z - x * x - y * y)

        tait_bryan_angles = gs.concatenate([angle_1, angle_2, angle_3], axis=1)
        return tait_bryan_angles
コード例 #11
0
    def convert_to_klein_coordinates(points):
        poincare_coords = points[:, 1:] / (1 + points[:, :1])
        poincare_radius = gs.linalg.norm(poincare_coords, axis=1)
        poincare_angle = gs.arctan2(poincare_coords[:, 1], poincare_coords[:, 0])

        klein_radius = 2 * poincare_radius / (1 + poincare_radius ** 2)
        klein_angle = poincare_angle

        coords_0 = gs.expand_dims(klein_radius * gs.cos(klein_angle), axis=1)
        coords_1 = gs.expand_dims(klein_radius * gs.sin(klein_angle), axis=1)
        klein_coords = gs.concatenate([coords_0, coords_1], axis=1)
        return klein_coords
コード例 #12
0
    def convert_to_klein_coordinates(self, points):
        poincare_coords = points[:, 1:] / (1 + points[:, :1])
        poincare_radius = gs.linalg.norm(poincare_coords, axis=1)
        poincare_angle = gs.arctan2(poincare_coords[:, 1], poincare_coords[:,
                                                                           0])

        klein_radius = 2 * poincare_radius / (1 + poincare_radius**2)
        klein_angle = poincare_angle

        klein_coords = gs.zeros_like(poincare_coords)
        klein_coords[:, 0] = klein_radius * gs.cos(klein_angle)
        klein_coords[:, 1] = klein_radius * gs.sin(klein_angle)
        return klein_coords
コード例 #13
0
ファイル: hypersphere.py プロジェクト: xpennec/geomstats
    def extrinsic_to_angle(point_extrinsic):
        """Compute the angle of a point in the plane.

        Convert from the extrinsic coordinates in the 2d plane to angle in
        radians. Angle 0 corresponds to point [1., 0.]. This method is only
        implemented in dimension 1.

        Parameters
        ----------
        point_extrinsic : array-like, shape=[...]
            Point on the circle, in extrinsic coordinates in Euclidean space.

        Returns
        -------
        point_angle : array_like, shape=[..., 2]
            Point on the circle, i.e. an angle in radians in [-Pi, Pi].
        """
        return gs.arctan2(point_extrinsic[..., 1], point_extrinsic[..., 0])
コード例 #14
0
def grad(y_pred, y_true,
         metric=SO3.bi_invariant_metric,
         representation='vector'):

    y_pred = gs.expand_dims(y_pred, axis=0)
    y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SO3, metric)

    if representation == 'quaternion':
        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm ** 2 + quat_scalar ** 2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = - 2 * quat_vec / (quat_sq_norm)
        differential_scalar = gs.to_ndarray(differential_scalar, to_ndim=2)
        differential_scalar = gs.transpose(differential_scalar)

        differential_vec = (2 * (quat_scalar / quat_sq_norm
                                 - 2 * quat_arctan2 / quat_vec_norm)
                            * (gs.einsum('ni,nj->nij', quat_vec, quat_vec)
                               / quat_vec_norm ** 2)
                            + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))
        differential_vec = gs.squeeze(differential_vec)

        differential = gs.concatenate(
            [differential_scalar, differential_vec],
            axis=1)

        y_pred = SO3.rotation_vector_from_quaternion(y_pred)
        y_true = SO3.rotation_vector_from_quaternion(y_true)

        grad = lie_group.grad(y_pred, y_true, SO3, metric)

        grad = gs.matmul(grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
コード例 #15
0
def grad(y_pred, y_true,
         metric=SO3.bi_invariant_metric,
         representation='vector'):

    y_pred = gs.expand_dims(y_pred, axis=0)
    y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SO3, metric)

    if representation == 'quaternion':
        differential = gs.zeros((1, 6, 7))

        differential = gs.zeros((1, 3, 4))
        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm ** 2 + quat_scalar ** 2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = - 2 * quat_vec / (quat_sq_norm)
        differential_vec = (2 * (quat_scalar / quat_sq_norm
                                 - 2 * quat_arctan2 / quat_vec_norm)
                            * gs.outer(quat_vec, quat_vec) / quat_vec_norm ** 2
                            + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        differential[0, :, :1] = differential_scalar.transpose()
        differential[0, :, 1:] = differential_vec

        y_pred = SO3.rotation_vector_from_quaternion(y_pred)
        y_true = SO3.rotation_vector_from_quaternion(y_true)

        grad = lie_group.grad(y_pred, y_true, SO3, metric)

        grad = gs.matmul(grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
コード例 #16
0
def grad(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """Closed-form for the gradient of pose_loss.

    Parameters
    ----------
    y_pred : array-like
        Prediction on SE(3).
    y_true : array-like
        Ground-truth on SE(3).
    metric : RiemannianMetric
        Metric used to compute the loss and gradient.
    representation : str, {'vector', 'matrix'}
        Representation chosen for points in SE(3).

    Returns
    -------
    lie_grad : array-like
        Tangent vector at point y_pred.
    """
    if gs.ndim(y_pred) == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if gs.ndim(y_true) == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        lie_grad = lie_group.grad(y_pred, y_true, SE3, metric)

    if representation == 'quaternion':

        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred_pose = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true_pose = gs.hstack([y_true_rot_vec, y_true[:, 4:]])
        lie_grad = lie_group.grad(y_pred_pose, y_true_pose, SE3, metric)

        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:4]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm**2 + quat_scalar**2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = -2 * quat_vec / (quat_sq_norm)
        differential_vec = (
            2 *
            (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) *
            (gs.einsum('ni,nj->nij', quat_vec, quat_vec) / quat_vec_norm *
             quat_vec_norm) + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        differential_scalar_t = gs.transpose(differential_scalar, axes=(1, 0))

        upper_left_block = gs.hstack(
            (differential_scalar_t, differential_vec[0]))
        upper_right_block = gs.zeros((3, 3))
        lower_right_block = gs.eye(3)
        lower_left_block = gs.zeros((3, 4))

        top = gs.hstack((upper_left_block, upper_right_block))
        bottom = gs.hstack((lower_left_block, lower_right_block))

        differential = gs.vstack((top, bottom))
        differential = gs.expand_dims(differential, axis=0)

        lie_grad = gs.einsum('ni,nij->ni', lie_grad, differential)

    lie_grad = gs.squeeze(lie_grad, axis=0)
    return lie_grad