コード例 #1
0
def logistic_radial_kernel(distance, bandwidth=1.0):
    """Logistic radial kernel.

    Parameters
    ----------
    distance : array-like
        Array of non-negative real values.
    bandwidth : float, optional (default=1.0)
        Positive scale parameter of the kernel.

    Returns
    -------
    weight : array-like
        Array of non-negative real values of the same shape than
        parameter 'distance'.

    References
    ----------
    https://en.wikipedia.org/wiki/Kernel_(statistics)
    """
    distance = _check_distance(distance)
    bandwidth = _check_bandwidth(bandwidth)
    scaled_distance = distance / bandwidth
    weight = 1 / (gs.exp(scaled_distance) + 2 + gs.exp(-scaled_distance))
    return weight
コード例 #2
0
 def orbit_data(self):
     point = gs.array([[gs.exp(4.0), 0.0], [0.0, gs.exp(2.0)]])
     sqrt = gs.array([[gs.exp(2.0), 0.0], [0.0, gs.exp(1.0)]])
     identity = GeneralLinear(2).identity
     time = gs.linspace(0.0, 1.0, 3)
     smoke_data = [
         dict(
             n=2,
             point=point,
             base_point=identity,
             time=time,
             expected=gs.array([identity, sqrt, point]),
         ),
         dict(
             n=2,
             point=[point, point],
             base_point=identity,
             time=time,
             expected=[
                 gs.array([identity, sqrt, point]),
                 gs.array([identity, sqrt, point]),
             ],
         ),
     ]
     return self.generate_tests(smoke_data)
コード例 #3
0
 def test_gaussian_radial_kernel(self):
     """Test the gaussian radial kernel."""
     distance = gs.array([[1], [2]], dtype=float)
     bandwidth = 2
     weight = gaussian_radial_kernel(distance=distance, bandwidth=bandwidth)
     result = weight
     expected = gs.array([[gs.exp(-1 / 8)], [gs.exp(-1 / 2)]], dtype=float)
     self.assertAllClose(expected, result, atol=gs.atol)
コード例 #4
0
ファイル: poincare_ball.py プロジェクト: alebrigant/geomstats
    def norm_factor_gradient(self, variances):
        """Compute normalization factor and its gradient.

        Compute normalization factor given current variance
        and dimensionality.

        Parameters
        ----------
        variances : array-like, shape=[n]
            Value of variance.

        Returns
        -------
        norm_factor : array-like, shape=[n]
            Normalisation factor.
        norm_factor_gradient : array-like, shape=[n]
            Gradient of the normalization factor.
        """
        variances = gs.transpose(gs.to_ndarray(variances, to_ndim=2))
        dim_range = gs.arange(0, self.dim, 1.0)
        alpha = self._compute_alpha(dim_range)

        binomial_coefficient = gs.ones(self.dim)
        binomial_coefficient[1:] = (self.dim - 1 + 1 - dim_range[1:]) / dim_range[1:]
        binomial_coefficient = gs.cumprod(binomial_coefficient)

        beta = ((-gs.ones(self.dim)) ** dim_range) * binomial_coefficient

        sigma_repeated = gs.repeat(variances, self.dim, -1)
        prod_alpha_sigma = gs.einsum("ij,j->ij", sigma_repeated, alpha)
        term_2 = gs.exp((prod_alpha_sigma) ** 2) * (1 + gs.erf(prod_alpha_sigma))
        term_1 = gs.sqrt(gs.pi / 2.0) * (1.0 / (2 ** (self.dim - 1)))
        term_2 = gs.einsum("ij,j->ij", term_2, beta)
        norm_factor = term_1 * variances * gs.sum(term_2, axis=-1, keepdims=True)
        grad_term_1 = 1 / variances

        grad_term_21 = 1 / gs.sum(term_2, axis=-1, keepdims=True)

        grad_term_211 = (
            gs.exp((prod_alpha_sigma) ** 2)
            * (1 + gs.erf(prod_alpha_sigma))
            * gs.einsum("ij,j->ij", sigma_repeated, alpha**2)
            * 2
        )

        grad_term_212 = gs.repeat(
            gs.expand_dims((2 / gs.sqrt(gs.pi)) * alpha, axis=0),
            variances.shape[0],
            axis=0,
        )

        grad_term_22 = grad_term_211 + grad_term_212
        grad_term_22 = gs.einsum("ij, j->ij", grad_term_22, beta)
        grad_term_22 = gs.sum(grad_term_22, axis=-1, keepdims=True)

        norm_factor_gradient = grad_term_1 + (grad_term_21 * grad_term_22)

        return gs.squeeze(norm_factor), gs.squeeze(norm_factor_gradient)
コード例 #5
0
 def test_laplacian_radial_kernel(self):
     """Test the Laplacian radial kernel."""
     distance = gs.array([[1], [2]], dtype=float)
     bandwidth = 2
     weight = laplacian_radial_kernel(distance=distance,
                                      bandwidth=bandwidth)
     result = weight
     expected = gs.array([[gs.exp(-1 / 2)], [gs.exp(-1.0)]], dtype=float)
     self.assertAllClose(expected, result, atol=TOLERANCE)
コード例 #6
0
 def test_logistic_radial_kernel(self):
     """Test the logistic radial kernel."""
     distance = gs.array([[1], [2]], dtype=float)
     bandwidth = 2
     weight = logistic_radial_kernel(distance=distance, bandwidth=bandwidth)
     result = weight
     expected = gs.array([[1 / (gs.exp(1 / 2) + 2 + gs.exp(-1 / 2))],
                          [1 / (gs.exp(1.0) + 2 + gs.exp(-1.0))]])
     self.assertAllClose(expected, result, atol=TOLERANCE)
コード例 #7
0
    def test_orbit(self):
        point = gs.array([[gs.exp(4.), 0.], [0., gs.exp(2.)]])
        sqrt = gs.array([[gs.exp(2.), 0.], [0., gs.exp(1.)]])
        idty = GeneralLinear(2).identity

        path = GeneralLinear(2).orbit(point)
        time = gs.linspace(0., 1., 3)

        result = path(time)
        expected = gs.array([idty, sqrt, point])
        self.assertAllClose(result, expected)
コード例 #8
0
    def test_orbit_vectorization(self):
        point = gs.array([[gs.exp(4.), 0.], [0., gs.exp(2.)]])
        sqrt = gs.array([[gs.exp(2.), 0.], [0., gs.exp(1.)]])
        identity = GeneralLinear(2).identity

        path = GeneralLinear(2).orbit(gs.stack([point] * 2), identity)
        time = gs.linspace(0., 1., 3)

        result = path(time)
        expected = gs.array([identity, sqrt, point])
        expected = gs.stack([expected] * 2)
        self.assertAllClose(result, expected)
コード例 #9
0
    def weighted_gmm_pdf(mixture_coefficients,
                         mesh_data,
                         means,
                         variances,
                         metric):
        """Return the probability density function of a GMM.

        Parameters
        ----------
        mixture_coefficients : array-like, shape=[n_gaussians,]
            Coefficients of the Gaussian mixture model.
        mesh_data : array-like, shape=[n_precision, dim]
            Points at which the GMM probability density is computed.
        means : array-like, shape=[n_gaussians, dim]
            Means of each component of the GMM.
        variances : array-like, shape=[n_gaussians,]
            Variances of each component of the GMM.
        metric : function
            Distance function associated with the used metric.

        Returns
        -------
        weighted_pdf : array-like, shape=[n_precision, n_gaussians,]
            Probability density function computed for each point of
            the mesh data, for each component of the GMM.
        """
        distance_to_mean = metric.dist_broadcast(mesh_data, means)

        variances_units = gs.expand_dims(variances, 0)
        variances_units = gs.repeat(
            variances_units, distance_to_mean.shape[0], axis=0)

        distribution_normal = gs.exp(
            -(distance_to_mean ** 2) / (2 * variances_units ** 2))

        zeta_sigma = PI_2_3 * variances
        zeta_sigma = zeta_sigma * gs.exp(
            (variances ** 2 / 2) * gs.erf(variances / gs.sqrt(2)))

        result_num = gs.expand_dims(mixture_coefficients, 0)
        result_num = gs.repeat(
            result_num, len(distribution_normal), axis=0)
        result_num = result_num * distribution_normal

        result_denum = gs.expand_dims(zeta_sigma, 0)
        result_denum = gs.repeat(
            result_denum, len(distribution_normal), axis=0)

        weighted_pdf = result_num / result_denum

        return weighted_pdf
コード例 #10
0
 def test_sigmoid_radial_kernel(self):
     """Test the sigmoid radial kernel."""
     distance = gs.array([[1], [2]], dtype=float)
     bandwidth = 2
     weight = sigmoid_radial_kernel(distance=distance, bandwidth=bandwidth)
     result = weight
     expected = gs.array(
         [
             [1 / (gs.exp(1 / 2) + gs.exp(-1 / 2))],
             [1 / (gs.exp(1.0) + gs.exp(-1.0))],
         ],
         dtype=float,
     )
     self.assertAllClose(expected, result, atol=gs.atol)
コード例 #11
0
    def normalization_factor(self, variances):
        """Return normalization factor.

        Parameters
        ----------
        variances : array-like, shape=[n,]
            Array of equally distant values of the
            variance precision time.

        Returns
        -------
        norm_func : array-like, shape=[n,]
            Normalisation factor for all given variances.
        """
        binomial_coefficient = None
        n_samples = variances.shape[0]

        expand_variances = gs.expand_dims(variances, axis=0)
        expand_variances = gs.repeat(expand_variances, self.dim, axis=0)

        if binomial_coefficient is None:

            dim_range = gs.arange(self.dim)
            dim_range[0] = 1
            n_fact = dim_range.prod()

            k_fact = gs.concatenate([
                gs.expand_dims(dim_range[:i].prod(), 0)
                for i in range(1, dim_range.shape[0] + 1)
            ], 0)

            nmk_fact = gs.flip(k_fact, 0)

            binomial_coefficient = n_fact / (k_fact * nmk_fact)

        binomial_coefficient = gs.expand_dims(binomial_coefficient, -1)
        binomial_coefficient = gs.repeat(binomial_coefficient,
                                         n_samples,
                                         axis=1)

        range_ = gs.expand_dims(gs.arange(self.dim), -1)
        range_ = gs.repeat(range_, n_samples, axis=1)

        ones_ = gs.expand_dims(gs.ones(self.dim), -1)
        ones_ = gs.repeat(ones_, n_samples, axis=1)

        alternate_neg = (-ones_)**(range_)

        erf_arg = ((
            (self.dim - 1) - 2 * range_) * expand_variances) / gs.sqrt(2)
        exp_arg = ((((self.dim - 1) - 2 * range_) * expand_variances) /
                   gs.sqrt(2))**2
        norm_func_1 = (1 + gs.erf(erf_arg)) * gs.exp(exp_arg)
        norm_func_2 = binomial_coefficient * norm_func_1
        norm_func_3 = alternate_neg * norm_func_2

        norm_func = NORMALIZATION_FACTOR_CST * variances * \
            norm_func_3.sum(0) * (1 / (2 ** (self.dim - 1)))

        return norm_func
コード例 #12
0
        def _exp(tangent_vec, base_point):
            circle_center = (base_point[0] +
                             base_point[1] * tangent_vec[1] / tangent_vec[0])
            circle_radius = gs.sqrt((circle_center - base_point[0])**2 +
                                    base_point[1]**2)

            moebius_d = 1
            moebius_c = 1 / (2 * circle_radius)
            moebius_b = circle_center - circle_radius
            moebius_a = (circle_center + circle_radius) * moebius_c

            point_complex = base_point[0] + 1j * base_point[1]
            tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

            point_moebius = (1j * (moebius_d * point_complex - moebius_b) /
                             (moebius_c * point_complex - moebius_a))
            tangent_vec_moebius = (
                -1j * tangent_vec_complex *
                (1j * moebius_c * point_moebius + moebius_d)**2)

            end_point_moebius = point_moebius * gs.exp(
                tangent_vec_moebius / point_moebius)
            end_point_complex = (
                moebius_a * 1j * end_point_moebius +
                moebius_b) / (moebius_c * 1j * end_point_moebius + moebius_d)
            end_point_expected = gs.hstack(
                [np.real(end_point_complex),
                 np.imag(end_point_complex)])
            return end_point_expected
コード例 #13
0
    def exp(self, tangent_vec, base_point, **kwargs):
        """Compute the Cholesky exponential map.

        Compute the Riemannian exponential at point base_point
        of tangent vector tangent_vec wrt the Cholesky metric.
        This gives a lower triangular matrix with positive elements.

        Parameters
        ----------
        tangent_vec : array-like, shape=[..., n, n]
            Tangent vector at base point.
        base_point : array-like, shape=[..., n, n]
            Base point.

        Returns
        -------
        exp : array-like, shape=[..., n, n]
            Riemannian exponential.
        """
        sl_base_point = Matrices.to_strictly_lower_triangular(base_point)
        sl_tangent_vec = Matrices.to_strictly_lower_triangular(tangent_vec)
        diag_base_point = Matrices.diagonal(base_point)
        diag_tangent_vec = Matrices.diagonal(tangent_vec)
        diag_product_expm = gs.exp(gs.divide(diag_tangent_vec, diag_base_point))

        sl_exp = sl_base_point + sl_tangent_vec
        diag_exp = gs.vec_to_diag(diag_base_point * diag_product_expm)
        exp = sl_exp + diag_exp
        return exp
コード例 #14
0
def laplacian_radial_kernel(distance, bandwidth=1.0):
    """Laplacian radial kernel.

    Parameters
    ----------
    distance : array-like
        Array of non-negative real values.
    bandwidth : float, optional (default=1.0)
        Positive scale parameter of the kernel.

    Returns
    -------
    weight : array-like
        Array of non-negative real values of the same shape than
        parameter 'distance'.

    Returns
    -------
    http://crsouza.com/2010/03/17/
    kernel-functions-for-machine-learning-applications/
    https://data-flair.training/blogs/svm-kernel-functions/
    """
    distance = _check_distance(distance)
    bandwidth = _check_bandwidth(bandwidth)
    scaled_distance = distance / bandwidth
    weight = gs.exp(-scaled_distance)
    return weight
コード例 #15
0
def bump_radial_kernel(distance, bandwidth=1.0):
    """Bump radial kernel.

    Parameters
    ----------
    distance : array-like
        Array of non-negative real values.
    bandwidth : float, optional (default=1.0)
        Positive scale parameter of the kernel.

    Returns
    -------
    weight : array-like
        Array of non-negative real values of the same shape than
        parameter 'distance'.

    References
    ----------
    https://en.wikipedia.org/wiki/Radial_basis_function
    """
    distance = _check_distance(distance)
    bandwidth = _check_bandwidth(bandwidth)
    scaled_distance = distance / bandwidth
    weight = gs.where(
        scaled_distance < 1,
        gs.exp(-1 / (1 - scaled_distance**2)),
        gs.zeros(distance.shape, dtype=float),
    )
    return weight
コード例 #16
0
    def test_exp(self):
        point = gs.array([1., 1.])
        tangent_vec = gs.array([2., 1.])
        end_point = self.metric.exp(tangent_vec, point)

        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0])**2 + point[1]**2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = 1j * (moebius_d * point_complex - moebius_b)\
            / (moebius_c * point_complex - moebius_a)
        tangent_vec_moebius = -1j * tangent_vec_complex * (
            1j * moebius_c * point_moebius + moebius_d)**2

        end_point_moebius = point_moebius * gs.exp(
            tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius + moebius_b)\
            / (moebius_c * 1j * end_point_moebius + moebius_d)
        end_point_expected = gs.hstack(
            [np.real(end_point_complex),
             np.imag(end_point_complex)])

        self.assertAllClose(end_point, end_point_expected)
コード例 #17
0
def gaussian_radial_kernel(distance, bandwidth=1.0):
    """Gaussian radial kernel.

    Parameters
    ----------
    distance : array-like
        Array of non-negative real values.
    bandwidth : float, optional (default=1.0)
        Positive scale parameter of the kernel.

    Returns
    -------
    weight : array-like
        Array of non-negative real values of the same shape than
        parameter 'distance'.

    References
    ----------
    https://en.wikipedia.org/wiki/Kernel_(statistics)
    https://en.wikipedia.org/wiki/Radial_basis_function
    """
    distance = _check_distance(distance)
    bandwidth = _check_bandwidth(bandwidth)
    scaled_distance = distance / bandwidth
    weight = gs.exp(-(scaled_distance**2) / 2)
    return weight
コード例 #18
0
 def threshold(random_v):
     """Compute the acceptance threshold."""
     squared_norm = gs.sum(random_v ** 2, axis=-1)
     sinc = utils.taylor_exp_even_func(
         squared_norm, utils.sinc_close_0) ** (dim - 1)
     threshold_val = sinc * gs.exp(squared_norm * (dim - 1) / 2 / gs.pi)
     return threshold_val, squared_norm ** .5
コード例 #19
0
    def test_exp_vectorization(self):
        point = gs.array([[1.0, 1.0], [1.0, 1.0]])
        tangent_vec = gs.array([[2.0, 1.0], [2.0, 1.0]])
        result = self.metric.exp(tangent_vec, point)

        point = point[0]
        tangent_vec = tangent_vec[0]
        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0])**2 + point[1]**2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = (1j * (moebius_d * point_complex - moebius_b) /
                         (moebius_c * point_complex - moebius_a))
        tangent_vec_moebius = (-1j * tangent_vec_complex *
                               (1j * moebius_c * point_moebius + moebius_d)**2)

        end_point_moebius = point_moebius * gs.exp(
            tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius +
                             moebius_b) / (moebius_c * 1j * end_point_moebius +
                                           moebius_d)
        end_point_expected = gs.hstack(
            [np.real(end_point_complex),
             np.imag(end_point_complex)])
        expected = gs.stack([end_point_expected, end_point_expected])
        self.assertAllClose(result, expected)
コード例 #20
0
    def random_von_mises_fisher(self, kappa=10, n_samples=1):
        """Sample in the 2-sphere with the von Mises distribution.

        Sample in the 2-sphere with the von Mises distribution centered in the
        north pole.

        Parameters
        ----------
        kappa : int, optional
        n_samples : int, optional

        Returns
        -------
        point : array-like
        """
        if self.dimension != 2:
            raise NotImplementedError(
                'Sampling from the von Mises Fisher distribution'
                'is only implemented in dimension 2.')
        angle = 2. * gs.pi * gs.random.rand(n_samples)
        angle = gs.to_ndarray(angle, to_ndim=2, axis=1)
        unit_vector = gs.hstack((gs.cos(angle), gs.sin(angle)))
        scalar = gs.random.rand(n_samples)

        coord_z = 1. + 1. / kappa * gs.log(scalar + (1. - scalar) *
                                           gs.exp(gs.array(-2. * kappa)))
        coord_z = gs.to_ndarray(coord_z, to_ndim=2, axis=1)

        coord_xy = gs.sqrt(1. - coord_z**2) * unit_vector

        point = gs.hstack((coord_xy, coord_z))

        return point
コード例 #21
0
 def summand(k):
     exp_arg = -((dim - 1 - 2 * k)**2) / 2 / variances
     erf_arg_2 = (gs.pi * variances -
                  (dim - 1 - 2 * k) * 1j) / gs.sqrt(2 * variances)
     sign = (-1.0)**k
     comb_2 = gs.comb(k, dim - 1)
     return sign * comb_2 * gs.exp(exp_arg) * gs.real(gs.erf(erf_arg_2))
コード例 #22
0
    def aux_differential_power(power, tangent_vec, base_point):
        """Compute the differential of the matrix power.

        Auxiliary function to the functions differential_power and
        inverse_differential_power.

        Parameters
        ----------
        power : float
            Power function to differentiate.
        tangent_vec : array_like, shape=[..., n, n]
            Tangent vector at base point.
        base_point : array_like, shape=[..., n, n]
            Base point.

        Returns
        -------
        eigvectors : array-like, shape=[..., n, n]
        transp_eigvectors : array-like, shape=[..., n, n]
        numerator : array-like, shape=[..., n, n]
        denominator : array-like, shape=[..., n, n]
        temp_result : array-like, shape=[..., n, n]
        """
        eigvalues, eigvectors = gs.linalg.eigh(base_point)

        if power == 0:
            powered_eigvalues = gs.log(eigvalues)
        elif power == math.inf:
            powered_eigvalues = gs.exp(eigvalues)
        else:
            powered_eigvalues = eigvalues ** power

        denominator = eigvalues[..., :, None] - eigvalues[..., None, :]
        numerator = powered_eigvalues[..., :, None] - powered_eigvalues[..., None, :]

        if power == 0:
            numerator = gs.where(denominator == 0, gs.ones_like(numerator), numerator)
            denominator = gs.where(
                denominator == 0, eigvalues[..., :, None], denominator
            )
        elif power == math.inf:
            numerator = gs.where(
                denominator == 0, powered_eigvalues[..., :, None], numerator
            )
            denominator = gs.where(
                denominator == 0, gs.ones_like(numerator), denominator
            )
        else:
            numerator = gs.where(
                denominator == 0, power * powered_eigvalues[..., :, None], numerator
            )
            denominator = gs.where(
                denominator == 0, eigvalues[..., :, None], denominator
            )

        transp_eigvectors = Matrices.transpose(eigvectors)
        temp_result = Matrices.mul(transp_eigvectors, tangent_vec, eigvectors)

        return (eigvectors, transp_eigvectors, numerator, denominator, temp_result)
コード例 #23
0
 def test_inverse_differential_exp(self):
     base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., -1.]])
     x = gs.exp(1)
     y = gs.sinh(1)
     tangent_vec = gs.array([[x, x, y], [x, x, y], [y, y, 1 / x]])
     result = self.space.inverse_differential_exp(tangent_vec, base_point)
     expected = gs.array([[[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]])
     self.assertAllClose(result, expected)
コード例 #24
0
 def test_bump_radial_kernel(self):
     """Test the bump radial kernel."""
     distance = gs.array([[1 / 2], [2]], dtype=float)
     bandwidth = 1
     weight = bump_radial_kernel(distance=distance, bandwidth=bandwidth)
     result = weight
     expected = gs.array([[gs.exp(-1 / (3 / 4))], [0]], dtype=float)
     self.assertAllClose(expected, result, atol=gs.atol)
コード例 #25
0
def gaussian(x, mu, sig):
    a = (x - mu)**2 / (2 * (sig**2))
    b = 1 / (sig * (gs.sqrt(2 * gs.pi)))
    f = b * gs.exp(-a)
    l2_norm = gs.sqrt(gs.trapz(f**2, x))
    f_sinf = f / l2_norm

    return gs.array([f_sinf])
コード例 #26
0
 def test_inverse_differential_exp(self):
     """Test of inverse_differential_exp method."""
     base_point = gs.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]])
     x = gs.exp(1.0)
     y = gs.sinh(1.0)
     tangent_vec = gs.array([[x, x, y], [x, x, y], [y, y, 1.0 / x]])
     result = self.space.inverse_differential_exp(tangent_vec, base_point)
     expected = gs.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
     self.assertAllClose(result, expected)
コード例 #27
0
 def summand(k):
     exp_arg = -((dim - 1 - 2 * k)**2) / 2 / variances
     erf_arg_1 = (dim - 1 - 2 * k) * 1j / gs.sqrt(2 * variances)
     erf_arg_2 = (gs.pi * variances -
                  (dim - 1 - 2 * k) * 1j) / gs.sqrt(2 * variances)
     sign = (-1.0)**k
     comb = gs.comb(dim - 1, k)
     erf_terms = gs.imag(gs.erf(erf_arg_2) + gs.erf(erf_arg_1))
     return sign * comb * gs.exp(exp_arg) * erf_terms
コード例 #28
0
    def test_differential_exp(self):
        """Test of differential_exp method."""
        base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., -1.]])
        tangent_vec = gs.array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]])
        result = self.space.differential_exp(tangent_vec, base_point)
        x = gs.exp(1.)
        y = gs.sinh(1.)
        expected = gs.array([[x, x, y], [x, x, y], [y, y, 1 / x]])

        self.assertAllClose(result, expected)
コード例 #29
0
    def grad_log_sigmoid(vector):
        """Gradient of log sigmoid function.

        Parameters
        ----------
        vector : array-like, shape=[n_samples, dim]

        Returns
        -------
        gradient : array-like, shape=[n_samples, dim]
        """
        return 1 / (1 + gs.exp(vector))
コード例 #30
0
 def log_test_data(self):
     smoke_data = [
         dict(
             n=2,
             point=[[EULER, 0.0], [2.0, EULER**3]],
             base_point=[[EULER**3, 0.0], [4.0, EULER**4]],
             expected=[[-2.0 * EULER**3, 0.0], [-2.0, -1 * EULER**4]],
         ),
         dict(
             n=2,
             point=[
                 [[gs.exp(-2.0), 0.0], [0.0, gs.exp(2.0)]],
                 [[gs.exp(-3.0), 0.0], [2.0, gs.exp(3.0)]],
             ],
             base_point=[[[1.0, 0.0], [-1.0, 1.0]], [[1.0, 0.0], [0.0,
                                                                  1.0]]],
             expected=[[[-2.0, 0.0], [1.0, 2.0]], [[-3.0, 0.0], [2.0,
                                                                 3.0]]],
         ),
     ]
     return self.generate_tests(smoke_data)