class SpecialEuclideanGroup(LieGroup): """ Class for the special euclidean group SE(n), i.e. the Lie group of rigid transformations. """ def __init__(self, n): assert isinstance(n, int) and n > 1 self.n = n self.dimension = int((n * (n - 1)) / 2 + n) super(SpecialEuclideanGroup, self).__init__( dimension=self.dimension, identity=gs.zeros(self.dimension)) # TODO(nina): keep the names rotations and translations here? self.rotations = SpecialOrthogonalGroup(n=n) self.translations = EuclideanSpace(dimension=n) self.point_representation = 'vector' if n == 3 else 'matrix' def belongs(self, point): """ Evaluate if a point belongs to SE(n). """ point = gs.to_ndarray(point, to_ndim=2) _, point_dim = point.shape return point_dim == self.dimension def regularize(self, point): """ Regularize a point to the canonical representation chosen for SE(n). """ assert self.point_representation == 'vector' point = gs.to_ndarray(point, to_ndim=2) assert self.belongs(point) rotations = self.rotations dim_rotations = rotations.dimension regularized_point = gs.zeros_like(point) rot_vec = point[:, :dim_rotations] regularized_point[:, :dim_rotations] = rotations.regularize(rot_vec) regularized_point[:, dim_rotations:] = point[:, dim_rotations:] return regularized_point def regularize_tangent_vec_at_identity(self, tangent_vec, metric=None): return self.regularize_tangent_vec(tangent_vec, self.identity, metric) def regularize_tangent_vec(self, tangent_vec, base_point, metric=None): if metric is None: metric = self.left_canonical_metric tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2) base_point = gs.to_ndarray(base_point, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_tangent_vec = tangent_vec[:, :dim_rotations] rot_base_point = base_point[:, :dim_rotations] metric_mat = metric.inner_product_mat_at_identity rot_metric_mat = metric_mat[:, :dim_rotations, :dim_rotations] rot_metric = InvariantMetric( group=rotations, inner_product_mat_at_identity=rot_metric_mat, left_or_right=metric.left_or_right) regularized_vec = gs.zeros_like(tangent_vec) regularized_vec[:, :dim_rotations] = rotations.regularize_tangent_vec( tangent_vec=rot_tangent_vec, base_point=rot_base_point, metric=rot_metric) regularized_vec[:, dim_rotations:] = tangent_vec[:, dim_rotations:] return regularized_vec def compose(self, point_1, point_2): """ Compose two elements of SE(n). Formula: point_1 . point_2 = [R1 * R2, (R1 * t2) + t1] where: R1, R2 are rotation matrices, t1, t2 are translation vectors. """ rotations = self.rotations dim_rotations = rotations.dimension point_1 = self.regularize(point_1) point_2 = self.regularize(point_2) n_points_1, _ = point_1.shape n_points_2, _ = point_2.shape assert (point_1.shape == point_2.shape or n_points_1 == 1 or n_points_2 == 1) rot_vec_1 = point_1[:, :dim_rotations] rot_mat_1 = rotations.matrix_from_rotation_vector(rot_vec_1) rot_mat_1 = so_group.closest_rotation_matrix(rot_mat_1) rot_vec_2 = point_2[:, :dim_rotations] rot_mat_2 = rotations.matrix_from_rotation_vector(rot_vec_2) rot_mat_2 = so_group.closest_rotation_matrix(rot_mat_2) translation_1 = point_1[:, dim_rotations:] translation_2 = point_2[:, dim_rotations:] n_compositions = gs.maximum(n_points_1, n_points_2) composition_rot_mat = gs.matmul(rot_mat_1, rot_mat_2) composition_rot_vec = rotations.rotation_vector_from_matrix( composition_rot_mat) composition_translation = gs.zeros((n_compositions, self.n)) for i in range(n_compositions): translation_1_i = (translation_1[0] if n_points_1 == 1 else translation_1[i]) rot_mat_1_i = (rot_mat_1[0] if n_points_1 == 1 else rot_mat_1[i]) translation_2_i = (translation_2[0] if n_points_2 == 1 else translation_2[i]) composition_translation[i] = (gs.dot(translation_2_i, gs.transpose(rot_mat_1_i)) + translation_1_i) composition = gs.zeros((n_compositions, self.dimension)) composition[:, :dim_rotations] = composition_rot_vec composition[:, dim_rotations:] = composition_translation composition = self.regularize(composition) return composition def inverse(self, point): """ Compute the group inverse in SE(n). Formula: (R, t)^{-1} = (R^{-1}, R^{-1}.(-t)) """ rotations = self.rotations dim_rotations = rotations.dimension point = self.regularize(point) n_points, _ = point.shape rot_vec = point[:, :dim_rotations] translation = point[:, dim_rotations:] inverse_point = gs.zeros_like(point) inverse_rotation = -rot_vec inv_rot_mat = rotations.matrix_from_rotation_vector(inverse_rotation) inverse_translation = gs.zeros((n_points, self.n)) for i in range(n_points): inverse_translation[i] = gs.dot(-translation[i], gs.transpose(inv_rot_mat[i])) inverse_point[:, :dim_rotations] = inverse_rotation inverse_point[:, dim_rotations:] = inverse_translation inverse_point = self.regularize(inverse_point) return inverse_point def jacobian_translation(self, point, left_or_right='left'): """ Compute the jacobian matrix of the differential of the left/right translations from the identity to point in SE(n). """ assert self.belongs(point) assert left_or_right in ('left', 'right') dim = self.dimension rotations = self.rotations dim_rotations = rotations.dimension point = self.regularize(point) n_points, _ = point.shape rot_vec = point[:, :dim_rotations] jacobian = gs.zeros((n_points,) + (dim,) * 2) if left_or_right == 'left': jacobian_rot = self.rotations.jacobian_translation( point=rot_vec, left_or_right='left') jacobian_trans = self.rotations.matrix_from_rotation_vector( rot_vec) jacobian[:, :dim_rotations, :dim_rotations] = jacobian_rot jacobian[:, dim_rotations:, dim_rotations:] = jacobian_trans else: jacobian_rot = self.rotations.jacobian_translation( point=rot_vec, left_or_right='right') inv_skew_mat = - so_group.skew_matrix_from_vector(rot_vec) jacobian[:, :dim_rotations, :dim_rotations] = jacobian_rot jacobian[:, dim_rotations:, :dim_rotations] = inv_skew_mat jacobian[:, dim_rotations:, dim_rotations:] = gs.eye(self.n) assert jacobian.ndim == 3 return jacobian def group_exp_from_identity(self, tangent_vec): """ Compute the group exponential of the tangent vector at the identity. """ tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = tangent_vec[:, :dim_rotations] rot_vec = self.rotations.regularize(rot_vec) translation = tangent_vec[:, dim_rotations:] angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) mask_close_pi = gs.isclose(angle, gs.pi) mask_close_pi = gs.squeeze(mask_close_pi, axis=1) rot_vec[mask_close_pi] = rotations.regularize( rot_vec[mask_close_pi]) skew_mat = so_group.skew_matrix_from_vector(rot_vec) sq_skew_mat = gs.matmul(skew_mat, skew_mat) mask_0 = gs.equal(angle, 0) mask_close_0 = gs.isclose(angle, 0) & ~mask_0 mask_0 = gs.squeeze(mask_0, axis=1) mask_close_0 = gs.squeeze(mask_close_0, axis=1) mask_else = ~mask_0 & ~mask_close_0 coef_1 = gs.zeros_like(angle) coef_2 = gs.zeros_like(angle) coef_1[mask_0] = 1. / 2. coef_2[mask_0] = 1. / 6. coef_1[mask_close_0] = (1. / 2. - angle[mask_close_0] ** 2 / 24. + angle[mask_close_0] ** 4 / 720. - angle[mask_close_0] ** 6 / 40320.) coef_2[mask_close_0] = (1. / 6. - angle[mask_close_0] ** 2 / 120. + angle[mask_close_0] ** 4 / 5040. - angle[mask_close_0] ** 6 / 362880.) coef_1[mask_else] = ((1. - gs.cos(angle[mask_else])) / angle[mask_else] ** 2) coef_2[mask_else] = ((angle[mask_else] - gs.sin(angle[mask_else])) / angle[mask_else] ** 3) n_tangent_vecs, _ = tangent_vec.shape group_exp_translation = gs.zeros((n_tangent_vecs, self.n)) for i in range(n_tangent_vecs): translation_i = translation[i] term_1_i = coef_1[i] * gs.dot(translation_i, gs.transpose(skew_mat[i])) term_2_i = coef_2[i] * gs.dot(translation_i, gs.transpose(sq_skew_mat[i])) group_exp_translation[i] = translation_i + term_1_i + term_2_i group_exp = gs.zeros_like(tangent_vec) group_exp[:, :dim_rotations] = rot_vec group_exp[:, dim_rotations:] = group_exp_translation group_exp = self.regularize(group_exp) return group_exp def group_log_from_identity(self, point): """ Compute the group logarithm of the point at the identity. """ assert self.belongs(point) point = self.regularize(point) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = point[:, :dim_rotations] angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) translation = point[:, dim_rotations:] group_log = gs.zeros_like(point) group_log[:, :dim_rotations] = rot_vec skew_rot_vec = so_group.skew_matrix_from_vector(rot_vec) sq_skew_rot_vec = gs.matmul(skew_rot_vec, skew_rot_vec) mask_close_0 = gs.isclose(angle, 0) mask_close_0 = gs.squeeze(mask_close_0, axis=1) mask_close_pi = gs.isclose(angle, gs.pi) mask_close_pi = gs.squeeze(mask_close_pi, axis=1) mask_else = ~mask_close_0 & ~mask_close_pi coef_1 = - 0.5 * gs.ones_like(angle) coef_2 = gs.zeros_like(angle) coef_2[mask_close_0] = (1. / 12. + angle[mask_close_0] ** 2 / 720. + angle[mask_close_0] ** 4 / 30240. + angle[mask_close_0] ** 6 / 1209600.) delta_angle = angle[mask_close_pi] - gs.pi coef_2[mask_close_pi] = (1. / PI2 + (PI2 - 8.) * delta_angle / (4. * PI3) - ((PI2 - 12.) * delta_angle ** 2 / (4. * PI4)) + ((-192. + 12. * PI2 + PI4) * delta_angle ** 3 / (48. * PI5)) - ((-240. + 12. * PI2 + PI4) * delta_angle ** 4 / (48. * PI6)) + ((-2880. + 120. * PI2 + 10. * PI4 + PI6) * delta_angle ** 5 / (480. * PI7)) - ((-3360 + 120. * PI2 + 10. * PI4 + PI6) * delta_angle ** 6 / (480. * PI8))) psi = (0.5 * angle[mask_else] * gs.sin(angle[mask_else]) / (1 - gs.cos(angle[mask_else]))) coef_2[mask_else] = (1 - psi) / (angle[mask_else] ** 2) n_points, _ = point.shape group_log_translation = gs.zeros((n_points, self.n)) for i in range(n_points): translation_i = translation[i] term_1_i = coef_1[i] * gs.dot(translation_i, gs.transpose(skew_rot_vec[i])) term_2_i = coef_2[i] * gs.dot(translation_i, gs.transpose(sq_skew_rot_vec[i])) group_log_translation[i] = translation_i + term_1_i + term_2_i group_log[:, dim_rotations:] = group_log_translation assert group_log.ndim == 2 return group_log def random_uniform(self, n_samples=1): """ Sample in SE(n) with the uniform distribution. """ random_rot_vec = self.rotations.random_uniform(n_samples) random_translation = self.translations.random_uniform(n_samples) random_transfo = gs.concatenate([random_rot_vec, random_translation], axis=1) random_transfo = self.regularize(random_transfo) return random_transfo def exponential_matrix(self, rot_vec): """ Compute the exponential of the rotation matrix represented by rot_vec. """ rot_vec = self.rotations.regularize(rot_vec) n_rot_vecs, _ = rot_vec.shape angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) skew_rot_vec = so_group.skew_matrix_from_vector(rot_vec) coef_1 = gs.empty_like(angle) coef_2 = gs.empty_like(coef_1) mask_0 = gs.equal(angle, 0) mask_0 = gs.squeeze(mask_0, axis=1) mask_close_to_0 = gs.isclose(angle, 0) mask_close_to_0 = gs.squeeze(mask_close_to_0, axis=1) mask_else = ~mask_0 & ~mask_close_to_0 coef_1[mask_close_to_0] = (1. / 2. - angle[mask_close_to_0] ** 2 / 24.) coef_2[mask_close_to_0] = (1. / 6. - angle[mask_close_to_0] ** 3 / 120.) # TODO(nina): check if the discountinuity as 0 is expected. coef_1[mask_0] = 0 coef_2[mask_0] = 0 coef_1[mask_else] = (angle[mask_else] ** (-2) * (1. - gs.cos(angle[mask_else]))) coef_2[mask_else] = (angle[mask_else] ** (-2) * (1. - (gs.sin(angle[mask_else]) / angle[mask_else]))) term_1 = gs.zeros((n_rot_vecs, self.n, self.n)) term_2 = gs.zeros_like(term_1) for i in range(n_rot_vecs): term_1[i] = gs.eye(self.n) + skew_rot_vec[i] * coef_1[i] term_2[i] = gs.matmul(skew_rot_vec[i], skew_rot_vec[i]) * coef_2[i] exponential_mat = term_1 + term_2 assert exponential_mat.ndim == 3 return exponential_mat def group_exponential_barycenter(self, points, weights=None): """ Compute the group exponential barycenter in SE(n). """ n_points = points.shape[0] assert n_points > 0 if weights is None: weights = gs.ones((n_points, 1)) weights = gs.to_ndarray(weights, to_ndim=2, axis=1) n_weights, _ = weights.shape assert n_points == n_weights dim = self.dimension rotations = self.rotations dim_rotations = rotations.dimension rotation_vectors = points[:, :dim_rotations] translations = points[:, dim_rotations:dim] assert rotation_vectors.shape == (n_points, dim_rotations) assert translations.shape == (n_points, self.n) mean_rotation = rotations.group_exponential_barycenter( points=rotation_vectors, weights=weights) mean_rotation_mat = rotations.matrix_from_rotation_vector( mean_rotation) matrix = gs.zeros((1,) + (self.n,) * 2) translation_aux = gs.zeros((1, self.n)) inv_rot_mats = rotations.matrix_from_rotation_vector( -rotation_vectors) # TODO(nina): this is the same mat multiplied several times matrix_aux = gs.matmul(mean_rotation_mat, inv_rot_mats) assert matrix_aux.shape == (n_points,) + (dim_rotations,) * 2 vec_aux = rotations.rotation_vector_from_matrix(matrix_aux) matrix_aux = self.exponential_matrix(vec_aux) matrix_aux = gs.linalg.inv(matrix_aux) for i in range(n_points): matrix += weights[i] * matrix_aux[i] translation_aux += weights[i] * gs.dot(gs.matmul( matrix_aux[i], inv_rot_mats[i]), translations[i]) mean_translation = gs.dot(translation_aux, gs.transpose(gs.linalg.inv(matrix), axes=(0, 2, 1))) exp_bar = gs.zeros((1, dim)) exp_bar[0, :dim_rotations] = mean_rotation exp_bar[0, dim_rotations:dim] = mean_translation return exp_bar
class TestEuclideanSpaceMethods(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): gs.random.seed(1234) self.dimension = 2 self.space = EuclideanSpace(self.dimension) self.metric = self.space.metric self.n_samples = 10 def test_belongs(self): point = self.space.random_uniform() belongs = self.space.belongs(point) gs.testing.assert_allclose(belongs.shape, (1, 1)) def test_random_uniform(self): point = self.space.random_uniform() gs.testing.assert_allclose(point.shape, (1, self.dimension)) def test_random_uniform_and_belongs(self): point = self.space.random_uniform() self.assertTrue(self.space.belongs(point)) def test_inner_product_matrix(self): result = self.metric.inner_product_matrix() expected = gs.eye(self.dimension) expected = helper.to_matrix(expected) gs.testing.assert_allclose(result, expected) def test_inner_product(self): point_a = gs.array([0, 1]) point_b = gs.array([2, 10]) result = self.metric.inner_product(point_a, point_b) expected = gs.dot(point_a, point_b) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) def test_inner_product_vectorization(self): n_samples = self.n_samples one_point_a = self.space.random_uniform(n_samples=1) one_point_b = self.space.random_uniform(n_samples=1) n_points_a = self.space.random_uniform(n_samples=n_samples) n_points_b = self.space.random_uniform(n_samples=n_samples) result = self.metric.inner_product(one_point_a, one_point_b) expected = gs.dot(one_point_a, one_point_b.transpose()) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) result = self.metric.inner_product(n_points_a, one_point_b) expected = gs.dot(n_points_a, one_point_b.transpose()) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) result = self.metric.inner_product(one_point_a, n_points_b) expected = gs.dot(one_point_a, n_points_b.transpose()).transpose() expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) result = self.metric.inner_product(n_points_a, n_points_b) expected = gs.zeros(n_samples) for i in range(n_samples): expected[i] = gs.dot(n_points_a[i], n_points_b[i]) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) def test_squared_norm(self): point = gs.array([-2, 4]) result = self.metric.squared_norm(point) expected = gs.linalg.norm(point) ** 2 expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) def test_squared_norm_vectorization(self): n_samples = self.n_samples n_points = self.space.random_uniform(n_samples=n_samples) result = self.metric.squared_norm(n_points) expected = gs.linalg.norm(n_points, axis=-1) ** 2 expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) def test_norm(self): point = gs.array([-2, 4]) result = self.metric.norm(point) expected = gs.linalg.norm(point) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) def test_norm_vectorization(self): n_samples = self.n_samples n_points = self.space.random_uniform(n_samples=n_samples) result = self.metric.norm(n_points) expected = gs.linalg.norm(n_points, axis=1) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) def test_exp(self): base_point = gs.array([0, 1]) vector = gs.array([2, 10]) result = self.metric.exp(tangent_vec=vector, base_point=base_point) expected = base_point + vector expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) def test_exp_vectorization(self): n_samples = self.n_samples dim = self.dimension one_tangent_vec = self.space.random_uniform(n_samples=1) one_base_point = self.space.random_uniform(n_samples=1) n_tangent_vecs = self.space.random_uniform(n_samples=n_samples) n_base_points = self.space.random_uniform(n_samples=n_samples) result = self.metric.exp(one_tangent_vec, one_base_point) expected = one_tangent_vec + one_base_point expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) result = self.metric.exp(n_tangent_vecs, one_base_point) gs.testing.assert_allclose(result.shape, (n_samples, dim)) result = self.metric.exp(one_tangent_vec, n_base_points) gs.testing.assert_allclose(result.shape, (n_samples, dim)) result = self.metric.exp(n_tangent_vecs, n_base_points) gs.testing.assert_allclose(result.shape, (n_samples, dim)) def test_log(self): base_point = gs.array([0, 1]) point = gs.array([2, 10]) result = self.metric.log(point=point, base_point=base_point) expected = point - base_point expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) def test_log_vectorization(self): n_samples = self.n_samples dim = self.dimension one_point = self.space.random_uniform(n_samples=1) one_base_point = self.space.random_uniform(n_samples=1) n_points = self.space.random_uniform(n_samples=n_samples) n_base_points = self.space.random_uniform(n_samples=n_samples) result = self.metric.log(one_point, one_base_point) expected = one_point - one_base_point expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) result = self.metric.log(n_points, one_base_point) gs.testing.assert_allclose(result.shape, (n_samples, dim)) result = self.metric.log(one_point, n_base_points) gs.testing.assert_allclose(result.shape, (n_samples, dim)) result = self.metric.log(n_points, n_base_points) gs.testing.assert_allclose(result.shape, (n_samples, dim)) def test_squared_dist(self): point_a = gs.array([-1, 4]) point_b = gs.array([1, 1]) result = self.metric.squared_dist(point_a, point_b) vec = point_b - point_a expected = gs.dot(vec, vec) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) def test_squared_dist_vectorization(self): n_samples = self.n_samples one_point_a = self.space.random_uniform(n_samples=1) one_point_b = self.space.random_uniform(n_samples=1) n_points_a = self.space.random_uniform(n_samples=n_samples) n_points_b = self.space.random_uniform(n_samples=n_samples) result = self.metric.squared_dist(one_point_a, one_point_b) vec = one_point_a - one_point_b expected = gs.dot(vec, vec.transpose()) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) result = self.metric.squared_dist(n_points_a, one_point_b) gs.testing.assert_allclose(result.shape, (n_samples, 1)) result = self.metric.squared_dist(one_point_a, n_points_b) gs.testing.assert_allclose(result.shape, (n_samples, 1)) result = self.metric.squared_dist(n_points_a, n_points_b) expected = gs.zeros(n_samples) for i in range(n_samples): vec = n_points_a[i] - n_points_b[i] expected[i] = gs.dot(vec, vec.transpose()) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) def test_dist(self): point_a = gs.array([0, 1]) point_b = gs.array([2, 10]) result = self.metric.dist(point_a, point_b) expected = gs.linalg.norm(point_b - point_a) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) def test_dist_vectorization(self): n_samples = self.n_samples one_point_a = self.space.random_uniform(n_samples=1) one_point_b = self.space.random_uniform(n_samples=1) n_points_a = self.space.random_uniform(n_samples=n_samples) n_points_b = self.space.random_uniform(n_samples=n_samples) result = self.metric.dist(one_point_a, one_point_b) vec = one_point_a - one_point_b expected = gs.sqrt(gs.dot(vec, vec.transpose())) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected) result = self.metric.dist(n_points_a, one_point_b) gs.testing.assert_allclose(result.shape, (n_samples, 1)) result = self.metric.dist(one_point_a, n_points_b) gs.testing.assert_allclose(result.shape, (n_samples, 1)) result = self.metric.dist(n_points_a, n_points_b) expected = gs.zeros(n_samples) for i in range(n_samples): vec = n_points_a[i] - n_points_b[i] expected[i] = gs.sqrt(gs.dot(vec, vec.transpose())) expected = helper.to_scalar(expected) gs.testing.assert_allclose(result.shape, (n_samples, 1)) gs.testing.assert_allclose(result, expected) def test_geodesic_and_belongs(self): initial_point = self.space.random_uniform() initial_tangent_vec = gs.array([2., 0.]) geodesic = self.metric.geodesic( initial_point=initial_point, initial_tangent_vec=initial_tangent_vec) t = gs.linspace(start=0, stop=1, num=100) points = geodesic(t) self.assertTrue(gs.all(self.space.belongs(points))) def test_mean(self): point = gs.array([1, 4]) result = self.metric.mean(points=[point, point, point]) expected = point expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) points = gs.array([[1, 2], [2, 3], [3, 4], [4, 5]]) weights = gs.array([1, 2, 1, 2]) result = self.metric.mean(points, weights) expected = gs.array([16., 22.]) / 6. expected = helper.to_vector(expected) gs.testing.assert_allclose(result, expected) def test_variance(self): points = gs.array([[1, 2], [2, 3], [3, 4], [4, 5]]) weights = gs.array([1, 2, 1, 2]) base_point = gs.zeros(2) result = self.metric.variance(points, weights, base_point) # we expect the average of the points' sq norms. expected = (1 * 5. + 2 * 13. + 1 * 25. + 2 * 41.) / 6. expected = helper.to_scalar(expected) gs.testing.assert_allclose(result, expected)
class TestEuclideanSpaceMethods(geomstats.tests.TestCase): _multiprocess_can_split_ = True def setUp(self): gs.random.seed(1234) self.dimension = 2 self.space = EuclideanSpace(self.dimension) self.metric = self.space.metric self.n_samples = 3 self.one_point_a = gs.array([0., 1.]) self.one_point_b = gs.array([2., 10.]) self.n_points_a = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) self.n_points_b = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) def test_random_uniform_and_belongs(self): point = self.space.random_uniform() result = self.space.belongs(point) expected = gs.array([[True]]) self.assertAllClose(result, expected) def test_squared_norm_vectorization(self): n_samples = self.n_samples n_points = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) result = self.metric.squared_norm(n_points) expected = gs.array([[5.], [20.], [26.]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) def test_norm_vectorization(self): n_samples = self.n_samples n_points = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) result = self.metric.norm(n_points) expected = gs.array([[2.2360679775], [4.472135955], [5.09901951359]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) def test_exp_vectorization(self): n_samples = self.n_samples dim = self.dimension one_tangent_vec = gs.array([0., 1.]) one_base_point = gs.array([2., 10.]) n_tangent_vecs = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) n_base_points = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.exp(one_tangent_vec, one_base_point) expected = one_tangent_vec + one_base_point expected = helper.to_vector(expected) self.assertAllClose(result, expected) result = self.metric.exp(n_tangent_vecs, one_base_point) self.assertAllClose(gs.shape(result), (n_samples, dim)) result = self.metric.exp(one_tangent_vec, n_base_points) self.assertAllClose(gs.shape(result), (n_samples, dim)) result = self.metric.exp(n_tangent_vecs, n_base_points) self.assertAllClose(gs.shape(result), (n_samples, dim)) def test_log_vectorization(self): n_samples = self.n_samples dim = self.dimension one_point = gs.array([0., 1.]) one_base_point = gs.array([2., 10.]) n_points = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) n_base_points = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.log(one_point, one_base_point) expected = one_point - one_base_point expected = helper.to_vector(expected) self.assertAllClose(result, expected) result = self.metric.log(n_points, one_base_point) self.assertAllClose(gs.shape(result), (n_samples, dim)) result = self.metric.log(one_point, n_base_points) self.assertAllClose(gs.shape(result), (n_samples, dim)) result = self.metric.log(n_points, n_base_points) self.assertAllClose(gs.shape(result), (n_samples, dim)) def test_squared_dist_vectorization(self): n_samples = self.n_samples one_point_a = gs.array([0., 1.]) one_point_b = gs.array([2., 10.]) n_points_a = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) n_points_b = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.squared_dist(one_point_a, one_point_b) vec = one_point_a - one_point_b expected = gs.dot(vec, gs.transpose(vec)) expected = helper.to_scalar(expected) self.assertAllClose(result, expected) result = self.metric.squared_dist(n_points_a, one_point_b) self.assertAllClose(gs.shape(result), (n_samples, 1)) result = self.metric.squared_dist(one_point_a, n_points_b) self.assertAllClose(gs.shape(result), (n_samples, 1)) result = self.metric.squared_dist(n_points_a, n_points_b) expected = gs.array([[81.], [109.], [29.]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) def test_dist_vectorization(self): n_samples = self.n_samples one_point_a = gs.array([0., 1.]) one_point_b = gs.array([2., 10.]) n_points_a = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) n_points_b = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.dist(one_point_a, one_point_b) vec = one_point_a - one_point_b expected = gs.sqrt(gs.dot(vec, gs.transpose(vec))) expected = helper.to_scalar(expected) self.assertAllClose(result, expected) result = self.metric.dist(n_points_a, one_point_b) self.assertAllClose(gs.shape(result), (n_samples, 1)) result = self.metric.dist(one_point_a, n_points_b) self.assertAllClose(gs.shape(result), (n_samples, 1)) result = self.metric.dist(n_points_a, n_points_b) expected = gs.array([[9.], [gs.sqrt(109.)], [gs.sqrt(29.)]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) def test_belongs(self): point = gs.array([0., 1.]) result = self.space.belongs(point) expected = gs.array([[True]]) self.assertAllClose(result, expected) def test_random_uniform(self): result = self.space.random_uniform() self.assertAllClose(gs.shape(result), (1, self.dimension)) def test_inner_product_matrix(self): result = self.metric.inner_product_matrix() expected = gs.eye(self.dimension) expected = helper.to_matrix(expected) self.assertAllClose(result, expected) def test_inner_product(self): point_a = gs.array([0., 1.]) point_b = gs.array([2., 10.]) result = self.metric.inner_product(point_a, point_b) expected = gs.array([[10.]]) self.assertAllClose(result, expected) def test_inner_product_vectorization(self): n_samples = 3 one_point_a = gs.array([0., 1.]) one_point_b = gs.array([2., 10.]) n_points_a = gs.array([[2., 1.], [-2., -4.], [-5., 1.]]) n_points_b = gs.array([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.inner_product(one_point_a, one_point_b) expected = gs.array([[10.]]) self.assertAllClose(gs.shape(result), (1, 1)) self.assertAllClose(result, expected) result = self.metric.inner_product(n_points_a, one_point_b) expected = gs.array([[14.], [-44.], [0.]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) result = self.metric.inner_product(one_point_a, n_points_b) expected = gs.array([[10.], [-1.], [6.]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) result = self.metric.inner_product(n_points_a, n_points_b) expected = gs.array([[14.], [-12.], [21.]]) self.assertAllClose(gs.shape(result), (n_samples, 1)) self.assertAllClose(result, expected) def test_squared_norm(self): point = gs.array([-2., 4.]) result = self.metric.squared_norm(point) expected = gs.array([[20.]]) self.assertAllClose(result, expected) def test_norm(self): point = gs.array([-2., 4.]) result = self.metric.norm(point) expected = gs.array([[4.472135955]]) self.assertAllClose(result, expected) def test_exp(self): base_point = gs.array([0., 1.]) vector = gs.array([2., 10.]) result = self.metric.exp(tangent_vec=vector, base_point=base_point) expected = base_point + vector expected = helper.to_vector(expected) self.assertAllClose(result, expected) def test_log(self): base_point = gs.array([0., 1.]) point = gs.array([2., 10.]) result = self.metric.log(point=point, base_point=base_point) expected = point - base_point expected = helper.to_vector(expected) self.assertAllClose(result, expected) def test_squared_dist(self): point_a = gs.array([-1., 4.]) point_b = gs.array([1., 1.]) result = self.metric.squared_dist(point_a, point_b) vec = point_b - point_a expected = gs.dot(vec, vec) expected = helper.to_scalar(expected) self.assertAllClose(result, expected) def test_dist(self): point_a = gs.array([0., 1.]) point_b = gs.array([2., 10.]) result = self.metric.dist(point_a, point_b) expected = gs.linalg.norm(point_b - point_a) expected = helper.to_scalar(expected) self.assertAllClose(result, expected) def test_geodesic_and_belongs(self): n_geodesic_points = 100 initial_point = gs.array([[2., -1.]]) initial_tangent_vec = gs.array([2., 0.]) geodesic = self.metric.geodesic( initial_point=initial_point, initial_tangent_vec=initial_tangent_vec) t = gs.linspace(start=0., stop=1., num=n_geodesic_points) points = geodesic(t) result = self.space.belongs(points) expected = gs.array(n_geodesic_points * [[True]]) self.assertAllClose(expected, result) def test_mean(self): point = gs.array([[1., 4.]]) result = self.metric.mean(points=[point, point, point]) expected = point expected = helper.to_vector(expected) self.assertAllClose(result, expected) points = gs.array([[1., 2.], [2., 3.], [3., 4.], [4., 5.]]) weights = gs.array([1., 2., 1., 2.]) result = self.metric.mean(points, weights) expected = gs.array([16. / 6., 22. / 6.]) expected = helper.to_vector(expected) self.assertAllClose(result, expected) def test_variance(self): points = gs.array([[1., 2.], [2., 3.], [3., 4.], [4., 5.]]) weights = gs.array([1., 2., 1., 2.]) base_point = gs.zeros(2) result = self.metric.variance(points, weights, base_point) # we expect the average of the points' sq norms. expected = (1 * 5. + 2 * 13. + 1 * 25. + 2 * 41.) / 6. expected = helper.to_scalar(expected) self.assertAllClose(result, expected)
class SpecialEuclideanGroup(LieGroup): """ Class for the special euclidean group SE(n), i.e. the Lie group of rigid transformations. """ def __init__(self, n, point_type=None, epsilon=0.): assert isinstance(n, int) and n > 1 self.n = n self.dimension = int((n * (n - 1)) / 2 + n) self.epsilon = epsilon self.default_point_type = point_type if point_type is None: self.default_point_type = 'vector' if n == 3 else 'matrix' super(SpecialEuclideanGroup, self).__init__(dimension=self.dimension) self.rotations = SpecialOrthogonalGroup(n=n, epsilon=epsilon) self.translations = EuclideanSpace(dimension=n) def get_identity(self, point_type=None): """ Get the identity of the group, as a vector if point_type == 'vector', as a matrix if point_type == 'matrix'. """ if point_type is None: point_type = self.default_point_type identity = gs.zeros(self.dimension) if self.default_point_type == 'matrix': identity = gs.eye(self.n) return identity identity = property(get_identity) def belongs(self, point, point_type=None): """ Evaluate if a point belongs to SE(n). """ if point_type is None: point_type = self.default_point_type if point_type == 'vector': point = gs.to_ndarray(point, to_ndim=2) n_points, point_dim = point.shape belongs = point_dim == self.dimension belongs = gs.to_ndarray(belongs, to_ndim=1) belongs = gs.to_ndarray(belongs, to_ndim=2, axis=1) belongs = gs.tile(belongs, (n_points, 1)) elif point_type == 'matrix': point = gs.to_ndarray(point, to_ndim=3) raise NotImplementedError() return belongs def regularize(self, point, point_type=None): """ Regularize a point to the canonical representation chosen for SE(n). """ if point_type is None: point_type = self.default_point_type if point_type == 'vector': point = gs.to_ndarray(point, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = point[:, :dim_rotations] regularized_rot_vec = rotations.regularize(rot_vec, point_type=point_type) translation = point[:, dim_rotations:] regularized_point = gs.concatenate( [regularized_rot_vec, translation], axis=1) elif point_type == 'matrix': point = gs.to_ndarray(point, to_ndim=3) regularized_point = gs.copy(point) return regularized_point def regularize_tangent_vec_at_identity(self, tangent_vec, metric=None, point_type=None): if point_type is None: point_type = self.default_point_type return self.regularize_tangent_vec(tangent_vec, self.identity, metric, point_type=point_type) def regularize_tangent_vec(self, tangent_vec, base_point, metric=None, point_type=None): if point_type is None: point_type = self.default_point_type if metric is None: metric = self.left_canonical_metric if point_type == 'vector': tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2) base_point = gs.to_ndarray(base_point, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_tangent_vec = tangent_vec[:, :dim_rotations] rot_base_point = base_point[:, :dim_rotations] metric_mat = metric.inner_product_mat_at_identity rot_metric_mat = metric_mat[:, :dim_rotations, :dim_rotations] rot_metric = InvariantMetric( group=rotations, inner_product_mat_at_identity=rot_metric_mat, left_or_right=metric.left_or_right) regularized_vec = gs.zeros_like(tangent_vec) rotations_vec = rotations.regularize_tangent_vec( tangent_vec=rot_tangent_vec, base_point=rot_base_point, metric=rot_metric, point_type=point_type) regularized_vec = gs.concatenate( [rotations_vec, tangent_vec[:, dim_rotations:]], axis=1) elif point_type == 'matrix': regularized_vec = tangent_vec return regularized_vec def compose(self, point_1, point_2, point_type=None): """ Compose two elements of SE(n). Formula: point_1 . point_2 = [R1 * R2, (R1 * t2) + t1] where: R1, R2 are rotation matrices, t1, t2 are translation vectors. """ if point_type is None: point_type = self.default_point_type rotations = self.rotations dim_rotations = rotations.dimension point_1 = self.regularize(point_1, point_type=point_type) point_2 = self.regularize(point_2, point_type=point_type) if point_type == 'vector': n_points_1, _ = point_1.shape n_points_2, _ = point_2.shape assert (point_1.shape == point_2.shape or n_points_1 == 1 or n_points_2 == 1) if n_points_1 == 1: point_1 = gs.stack([point_1[0]] * n_points_2) if n_points_2 == 1: point_2 = gs.stack([point_2[0]] * n_points_1) rot_vec_1 = point_1[:, :dim_rotations] rot_mat_1 = rotations.matrix_from_rotation_vector(rot_vec_1) rot_vec_2 = point_2[:, :dim_rotations] rot_mat_2 = rotations.matrix_from_rotation_vector(rot_vec_2) translation_1 = point_1[:, dim_rotations:] translation_2 = point_2[:, dim_rotations:] composition_rot_mat = gs.matmul(rot_mat_1, rot_mat_2) composition_rot_vec = rotations.rotation_vector_from_matrix( composition_rot_mat) composition_translation = gs.einsum('ij,ikj->ik', translation_2, rot_mat_1) + translation_1 composition = gs.concatenate( (composition_rot_vec, composition_translation), axis=1) elif point_type == 'matrix': raise NotImplementedError() composition = self.regularize(composition, point_type=point_type) return composition def inverse(self, point, point_type=None): """ Compute the group inverse in SE(n). Formula: (R, t)^{-1} = (R^{-1}, R^{-1}.(-t)) """ if point_type is None: point_type = self.default_point_type rotations = self.rotations dim_rotations = rotations.dimension point = self.regularize(point) if point_type == 'vector': n_points, _ = point.shape rot_vec = point[:, :dim_rotations] translation = point[:, dim_rotations:] inverse_point = gs.zeros_like(point) inverse_rotation = -rot_vec inv_rot_mat = rotations.matrix_from_rotation_vector( inverse_rotation) inverse_translation = gs.einsum( 'ni,nij->nj', -translation, gs.transpose(inv_rot_mat, axes=(0, 2, 1))) inverse_point = gs.concatenate( [inverse_rotation, inverse_translation], axis=1) elif point_type == 'matrix': raise NotImplementedError() inverse_point = self.regularize(inverse_point, point_type=point_type) return inverse_point def jacobian_translation(self, point, left_or_right='left', point_type=None): """ Compute the jacobian matrix of the differential of the left/right translations from the identity to point in SE(n). """ if point_type is None: point_type = self.default_point_type assert left_or_right in ('left', 'right') dim = self.dimension rotations = self.rotations translations = self.translations dim_rotations = rotations.dimension dim_translations = translations.dimension point = self.regularize(point, point_type=point_type) if point_type == 'vector': n_points, _ = point.shape rot_vec = point[:, :dim_rotations] jacobian = gs.zeros((n_points, ) + (dim, ) * 2) jacobian_rot = self.rotations.jacobian_translation( point=rot_vec, left_or_right=left_or_right, point_type=point_type) block_zeros_1 = gs.zeros( (n_points, dim_rotations, dim_translations)) jacobian_block_line_1 = gs.concatenate( [jacobian_rot, block_zeros_1], axis=2) if left_or_right == 'left': rot_mat = self.rotations.matrix_from_rotation_vector(rot_vec) jacobian_trans = rot_mat block_zeros_2 = gs.zeros( (n_points, dim_translations, dim_rotations)) jacobian_block_line_2 = gs.concatenate( [block_zeros_2, jacobian_trans], axis=2) else: inv_skew_mat = -self.rotations.skew_matrix_from_vector(rot_vec) eye = gs.to_ndarray(gs.eye(self.n), to_ndim=3) eye = gs.tile(eye, [n_points, 1, 1]) jacobian_block_line_2 = gs.concatenate([inv_skew_mat, eye], axis=2) jacobian = gs.concatenate( [jacobian_block_line_1, jacobian_block_line_2], axis=1) assert gs.ndim(jacobian) == 3 elif point_type == 'matrix': raise NotImplementedError() return jacobian def group_exp_from_identity(self, tangent_vec, point_type=None): """ Compute the group exponential of the tangent vector at the identity. """ if point_type is None: point_type = self.default_point_type if point_type == 'vector': tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = tangent_vec[:, :dim_rotations] rot_vec = self.rotations.regularize(rot_vec, point_type=point_type) translation = tangent_vec[:, dim_rotations:] angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) skew_mat = self.rotations.skew_matrix_from_vector(rot_vec) sq_skew_mat = gs.matmul(skew_mat, skew_mat) mask_0 = gs.equal(angle, 0.) mask_close_0 = gs.isclose(angle, 0.) & ~mask_0 mask_else = ~mask_0 & ~mask_close_0 mask_0_float = gs.cast(mask_0, gs.float32) mask_close_0_float = gs.cast(mask_close_0, gs.float32) mask_else_float = gs.cast(mask_else, gs.float32) angle += mask_0_float * gs.ones_like(angle) coef_1 = gs.zeros_like(angle) coef_2 = gs.zeros_like(angle) coef_1 += mask_0_float * 1. / 2. * gs.ones_like(angle) coef_2 += mask_0_float * 1. / 6. * gs.ones_like(angle) coef_1 += mask_close_0_float * ( TAYLOR_COEFFS_1_AT_0[0] + TAYLOR_COEFFS_1_AT_0[2] * angle**2 + TAYLOR_COEFFS_1_AT_0[4] * angle**4 + TAYLOR_COEFFS_1_AT_0[6] * angle**6) coef_2 += mask_close_0_float * ( TAYLOR_COEFFS_2_AT_0[0] + TAYLOR_COEFFS_2_AT_0[2] * angle**2 + TAYLOR_COEFFS_2_AT_0[4] * angle**4 + TAYLOR_COEFFS_2_AT_0[6] * angle**6) coef_1 += mask_else_float * ((1. - gs.cos(angle)) / angle**2) coef_2 += mask_else_float * ((angle - gs.sin(angle)) / angle**3) n_tangent_vecs, _ = tangent_vec.shape group_exp_translation = gs.zeros((n_tangent_vecs, self.n)) for i in range(n_tangent_vecs): translation_i = translation[i] term_1_i = coef_1[i] * gs.dot(translation_i, gs.transpose(skew_mat[i])) term_2_i = coef_2[i] * gs.dot(translation_i, gs.transpose(sq_skew_mat[i])) mask_i_float = gs.get_mask_i_float(i, n_tangent_vecs) group_exp_translation += mask_i_float * (translation_i + term_1_i + term_2_i) group_exp = gs.concatenate([rot_vec, group_exp_translation], axis=1) group_exp = self.regularize(group_exp, point_type=point_type) return group_exp elif point_type == 'matrix': raise NotImplementedError() def group_log_from_identity(self, point, point_type=None): """ Compute the group logarithm of the point at the identity. """ if point_type is None: point_type = self.default_point_type point = self.regularize(point, point_type=point_type) rotations = self.rotations dim_rotations = rotations.dimension if point_type == 'vector': rot_vec = point[:, :dim_rotations] angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) translation = point[:, dim_rotations:] skew_rot_vec = rotations.skew_matrix_from_vector(rot_vec) sq_skew_rot_vec = gs.matmul(skew_rot_vec, skew_rot_vec) mask_close_0 = gs.isclose(angle, 0.) mask_close_pi = gs.isclose(angle, gs.pi) mask_else = ~mask_close_0 & ~mask_close_pi mask_close_0_float = gs.cast(mask_close_0, gs.float32) mask_close_pi_float = gs.cast(mask_close_pi, gs.float32) mask_else_float = gs.cast(mask_else, gs.float32) mask_0 = gs.isclose(angle, 0., atol=1e-6) mask_0_float = gs.cast(mask_0, gs.float32) angle += mask_0_float * gs.ones_like(angle) coef_1 = -0.5 * gs.ones_like(angle) coef_2 = gs.zeros_like(angle) coef_2 += mask_close_0_float * (1. / 12. + angle**2 / 720. + angle**4 / 30240. + angle**6 / 1209600.) delta_angle = angle - gs.pi coef_2 += mask_close_pi_float * ( 1. / PI2 + (PI2 - 8.) * delta_angle / (4. * PI3) - ((PI2 - 12.) * delta_angle**2 / (4. * PI4)) + ((-192. + 12. * PI2 + PI4) * delta_angle**3 / (48. * PI5)) - ((-240. + 12. * PI2 + PI4) * delta_angle**4 / (48. * PI6)) + ((-2880. + 120. * PI2 + 10. * PI4 + PI6) * delta_angle**5 / (480. * PI7)) - ((-3360 + 120. * PI2 + 10. * PI4 + PI6) * delta_angle**6 / (480. * PI8))) psi = 0.5 * angle * gs.sin(angle) / (1 - gs.cos(angle)) coef_2 += mask_else_float * (1 - psi) / (angle**2) n_points, _ = point.shape group_log_translation = gs.zeros((n_points, self.n)) for i in range(n_points): translation_i = translation[i] term_1_i = coef_1[i] * gs.dot(translation_i, gs.transpose(skew_rot_vec[i])) term_2_i = coef_2[i] * gs.dot(translation_i, gs.transpose(sq_skew_rot_vec[i])) mask_i_float = gs.get_mask_i_float(i, n_points) group_log_translation += mask_i_float * (translation_i + term_1_i + term_2_i) group_log = gs.concatenate([rot_vec, group_log_translation], axis=1) assert gs.ndim(group_log) == 2 elif point_type == 'matrix': raise NotImplementedError() return group_log def random_uniform(self, n_samples=1, point_type=None): """ Sample in SE(n) with the uniform distribution. """ if point_type is None: point_type = self.default_point_type random_rot_vec = self.rotations.random_uniform(n_samples, point_type=point_type) random_translation = self.translations.random_uniform(n_samples) if point_type == 'vector': random_transfo = gs.concatenate( [random_rot_vec, random_translation], axis=1) elif point_type == 'matrix': raise NotImplementedError() random_transfo = self.regularize(random_transfo, point_type=point_type) return random_transfo def exponential_matrix(self, rot_vec): """ Compute the exponential of the rotation matrix represented by rot_vec. """ rot_vec = self.rotations.regularize(rot_vec) n_rot_vecs, _ = rot_vec.shape angle = gs.linalg.norm(rot_vec, axis=1) angle = gs.to_ndarray(angle, to_ndim=2, axis=1) skew_rot_vec = self.rotations.skew_matrix_from_vector(rot_vec) coef_1 = gs.empty_like(angle) coef_2 = gs.empty_like(coef_1) mask_0 = gs.equal(angle, 0) mask_0 = gs.squeeze(mask_0, axis=1) mask_close_to_0 = gs.isclose(angle, 0) mask_close_to_0 = gs.squeeze(mask_close_to_0, axis=1) mask_else = ~mask_0 & ~mask_close_to_0 coef_1[mask_close_to_0] = (1. / 2. - angle[mask_close_to_0]**2 / 24.) coef_2[mask_close_to_0] = (1. / 6. - angle[mask_close_to_0]**3 / 120.) # TODO(nina): Check if the discountinuity at 0 is expected. coef_1[mask_0] = 0 coef_2[mask_0] = 0 coef_1[mask_else] = (angle[mask_else]**(-2) * (1. - gs.cos(angle[mask_else]))) coef_2[mask_else] = (angle[mask_else]**(-2) * (1. - (gs.sin(angle[mask_else]) / angle[mask_else]))) term_1 = gs.zeros((n_rot_vecs, self.n, self.n)) term_2 = gs.zeros_like(term_1) for i in range(n_rot_vecs): term_1[i] = gs.eye(self.n) + skew_rot_vec[i] * coef_1[i] term_2[i] = gs.matmul(skew_rot_vec[i], skew_rot_vec[i]) * coef_2[i] exponential_mat = term_1 + term_2 assert exponential_mat.ndim == 3 return exponential_mat def group_exponential_barycenter(self, points, weights=None, point_type=None): """ Compute the group exponential barycenter in SE(n). """ if point_type is None: point_type = self.default_point_type n_points = points.shape[0] assert n_points > 0 if weights is None: weights = gs.ones((n_points, 1)) weights = gs.to_ndarray(weights, to_ndim=2, axis=1) n_weights, _ = weights.shape assert n_points == n_weights dim = self.dimension rotations = self.rotations dim_rotations = rotations.dimension if point_type == 'vector': rotation_vectors = points[:, :dim_rotations] translations = points[:, dim_rotations:dim] assert rotation_vectors.shape == (n_points, dim_rotations) assert translations.shape == (n_points, self.n) mean_rotation = rotations.group_exponential_barycenter( points=rotation_vectors, weights=weights) mean_rotation_mat = rotations.matrix_from_rotation_vector( mean_rotation) matrix = gs.zeros((1, ) + (self.n, ) * 2) translation_aux = gs.zeros((1, self.n)) inv_rot_mats = rotations.matrix_from_rotation_vector( -rotation_vectors) matrix_aux = gs.matmul(mean_rotation_mat, inv_rot_mats) assert matrix_aux.shape == (n_points, ) + (dim_rotations, ) * 2 vec_aux = rotations.rotation_vector_from_matrix(matrix_aux) matrix_aux = self.exponential_matrix(vec_aux) matrix_aux = gs.linalg.inv(matrix_aux) for i in range(n_points): matrix += weights[i] * matrix_aux[i] translation_aux += weights[i] * gs.dot( gs.matmul(matrix_aux[i], inv_rot_mats[i]), translations[i]) mean_translation = gs.dot( translation_aux, gs.transpose(gs.linalg.inv(matrix), axes=(0, 2, 1))) exp_bar = gs.zeros((1, dim)) exp_bar[0, :dim_rotations] = mean_rotation exp_bar[0, dim_rotations:dim] = mean_translation elif point_type == 'matrix': vector_points = self.rotation_vector_from_matrix(points) vector_exp_bar = self.group_exponential_barycenter( vector_points, weights, point_type='vector') exp_bar = self.matrix_from_rotation_vector(vector_exp_bar) return exp_bar
class TestEuclideanSpaceMethodsTensorFlow(tf.test.TestCase): _multiprocess_can_split_ = True def setUp(self): gs.random.seed(1234) self.dimension = 2 self.space = EuclideanSpace(self.dimension) self.metric = self.space.metric self.n_samples = 3 @classmethod def setUpClass(cls): os.environ['GEOMSTATS_BACKEND'] = 'tensorflow' importlib.reload(gs) @classmethod def tearDownClass(cls): os.environ['GEOMSTATS_BACKEND'] = 'numpy' importlib.reload(gs) def test_belongs(self): point = self.space.random_uniform() belongs = self.space.belongs(point) expected = tf.convert_to_tensor([[True]]) with self.test_session(): self.assertAllClose(gs.eval(belongs), gs.eval(expected)) def test_random_uniform(self): point = self.space.random_uniform() point_numpy = np.random.uniform(size=(1, self.dimension)) with self.test_session(): self.assertShapeEqual(point_numpy, point) def test_inner_product_matrix(self): result = self.metric.inner_product_matrix() expected = gs.eye(self.dimension) expected = helper.to_matrix(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_inner_product(self): point_a = tf.convert_to_tensor([0., 1.]) point_b = tf.convert_to_tensor([2., 10.]) result = self.metric.inner_product(point_a, point_b) expected = gs.dot(point_a, point_b) expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_inner_product_vectorization(self): n_samples = 3 one_point_a = tf.convert_to_tensor([0., 1.]) one_point_b = tf.convert_to_tensor([2., 10.]) n_points_a = tf.convert_to_tensor([[2., 1.], [-2., -4.], [-5., 1.]]) n_points_b = tf.convert_to_tensor([[2., 10.], [8., -1.], [-3., 6.]]) result = self.metric.inner_product(one_point_a, one_point_b) expected = gs.dot(one_point_a, gs.transpose(one_point_b)) expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) result = self.metric.inner_product(n_points_a, one_point_b) point_numpy = np.random.uniform(size=(n_samples, 1)) # TODO(nina): Fix this test with assertShapeEqual with self.test_session(): self.assertAllClose(point_numpy.shape, gs.eval(gs.shape(result))) result = self.metric.inner_product(one_point_a, n_points_b) point_numpy = np.random.uniform(size=(n_samples, 1)) # TODO(nina): Fix this test with assertShapeEqual with self.test_session(): self.assertAllClose(point_numpy.shape, gs.eval(gs.shape(result))) result = self.metric.inner_product(n_points_a, n_points_b) point_numpy = np.random.uniform(size=(n_samples, 1)) # TODO(nina): Fix this test with assertShapeEqual with self.test_session(): self.assertAllClose(point_numpy.shape, gs.eval(gs.shape(result))) def test_squared_norm(self): point = tf.convert_to_tensor([-2., 4.]) result = self.metric.squared_norm(point) expected = gs.linalg.norm(point)**2 expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_norm(self): point = tf.convert_to_tensor([-2., 4.]) result = self.metric.norm(point) expected = gs.linalg.norm(point) expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_exp(self): base_point = tf.convert_to_tensor([0., 1.]) vector = tf.convert_to_tensor([2., 10.]) result = self.metric.exp(tangent_vec=vector, base_point=base_point) expected = base_point + vector expected = helper.to_vector(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_log(self): base_point = tf.convert_to_tensor([0., 1.]) point = tf.convert_to_tensor([2., 10.]) result = self.metric.log(point=point, base_point=base_point) expected = point - base_point expected = helper.to_vector(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_squared_dist(self): point_a = tf.convert_to_tensor([-1., 4.]) point_b = tf.convert_to_tensor([1., 1.]) result = self.metric.squared_dist(point_a, point_b) vec = point_b - point_a expected = gs.dot(vec, vec) expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_dist(self): point_a = tf.convert_to_tensor([0., 1.]) point_b = tf.convert_to_tensor([2., 10.]) result = self.metric.dist(point_a, point_b) expected = gs.linalg.norm(point_b - point_a) expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_geodesic_and_belongs(self): n_geodesic_points = 100 initial_point = self.space.random_uniform() initial_tangent_vec = tf.convert_to_tensor([2., 0.]) geodesic = self.metric.geodesic( initial_point=initial_point, initial_tangent_vec=initial_tangent_vec) t = gs.linspace(start=0., stop=1., num=n_geodesic_points) points = geodesic(t) bool_belongs = self.space.belongs(points) expected = tf.convert_to_tensor(n_geodesic_points * [[True]]) with self.test_session(): self.assertAllClose(gs.eval(expected), gs.eval(bool_belongs)) def test_mean(self): # TODO(nina): Fix the fact that it doesn't work for [1., 4.] point = tf.convert_to_tensor([[1., 4.]]) result = self.metric.mean(points=[point, point, point]) expected = point expected = helper.to_vector(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) points = tf.convert_to_tensor([[1., 2.], [2., 3.], [3., 4.], [4., 5.]]) weights = gs.array([1., 2., 1., 2.]) result = self.metric.mean(points, weights) expected = tf.convert_to_tensor([16. / 6., 22. / 6.]) expected = helper.to_vector(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected)) def test_variance(self): points = tf.convert_to_tensor([[1., 2.], [2., 3.], [3., 4.], [4., 5.]]) weights = tf.convert_to_tensor([1., 2., 1., 2.]) base_point = gs.zeros(2) result = self.metric.variance(points, weights, base_point) # we expect the average of the points' sq norms. expected = (1 * 5. + 2 * 13. + 1 * 25. + 2 * 41.) / 6. expected = helper.to_scalar(expected) with self.test_session(): self.assertAllClose(gs.eval(result), gs.eval(expected))
class SpecialEuclideanGroup(LieGroup): def __init__(self, n): assert n > 1 if n is not 3: raise NotImplementedError('Only SE(3) is implemented.') self.n = n self.dimension = int((n * (n - 1)) / 2 + n) super(SpecialEuclideanGroup, self).__init__( dimension=self.dimension, identity=np.zeros(self.dimension)) # TODO(nina): keep the names rotations and translations here? self.rotations = SpecialOrthogonalGroup(n=n) self.translations = EuclideanSpace(dimension=n) def belongs(self, point): """ Check that the transformation belongs to the special euclidean group. """ point = vectorization.expand_dims(point, to_ndim=2) _, point_dim = point.shape return point_dim == self.dimension def regularize(self, point): """ Regularize an element of the group SE(3), by extracting the rotation vector r from the input [r t] and using self.rotations.regularize. :param point: 6d vector, element in SE(3) represented as [r t]. :returns self.regularized_point: 6d vector, element in SE(3) with self.regularized rotation. """ point = vectorization.expand_dims(point, to_ndim=2) assert self.belongs(point) rotations = self.rotations dim_rotations = rotations.dimension regularized_point = np.zeros_like(point) rot_vec = point[:, :dim_rotations] regularized_point[:, :dim_rotations] = rotations.regularize(rot_vec) regularized_point[:, dim_rotations:] = point[:, dim_rotations:] return regularized_point def regularize_tangent_vec_at_identity(self, tangent_vec, metric=None): return self.regularize_tangent_vec(tangent_vec, self.identity, metric) def regularize_tangent_vec(self, tangent_vec, base_point, metric=None): """ Regularize an element of the group SE(3), by extracting the rotation vector r from the input [r t] and using self.rotations.regularize. :param point: 6d vector, element in SE(3) represented as [r t]. :returns self.regularized_point: 6d vector, element in SE(3) with self.regularized rotation. """ if metric is None: metric = self.left_canonical_metric tangent_vec = vectorization.expand_dims(tangent_vec, to_ndim=2) base_point = vectorization.expand_dims(base_point, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_tangent_vec = tangent_vec[:, :dim_rotations] rot_base_point = base_point[:, :dim_rotations] metric_mat = metric.inner_product_mat_at_identity rot_metric_mat = metric_mat[:dim_rotations, :dim_rotations] rot_metric = InvariantMetric( group=rotations, inner_product_mat_at_identity=rot_metric_mat, left_or_right=metric.left_or_right) regularized_vec = np.zeros_like(tangent_vec) regularized_vec[:, :dim_rotations] = rotations.regularize_tangent_vec( tangent_vec=rot_tangent_vec, base_point=rot_base_point, metric=rot_metric) regularized_vec[:, dim_rotations:] = tangent_vec[:, dim_rotations:] return regularized_vec def compose(self, point_1, point_2): """ Compose two elements of group SE(3). Formula: point_1 . point_2 = [R1 * R2, (R1 * t2) + t1] where: R1, R2 are rotation matrices, t1, t2 are translation vectors. :param point_1, point_2: 6d vectors elements of SE(3) :return composition: composition of point_1 and point_2 """ rotations = self.rotations dim_rotations = rotations.dimension point_1 = self.regularize(point_1) point_2 = self.regularize(point_2) n_points_1, _ = point_1.shape n_points_2, _ = point_2.shape assert (point_1.shape == point_2.shape or n_points_1 == 1 or n_points_2 == 1) rot_vec_1 = point_1[:, :dim_rotations] rot_mat_1 = rotations.matrix_from_rotation_vector(rot_vec_1) rot_mat_1 = so_group.closest_rotation_matrix(rot_mat_1) rot_vec_2 = point_2[:, :dim_rotations] rot_mat_2 = rotations.matrix_from_rotation_vector(rot_vec_2) rot_mat_2 = so_group.closest_rotation_matrix(rot_mat_2) translation_1 = point_1[:, dim_rotations:] translation_2 = point_2[:, dim_rotations:] n_compositions = np.maximum(n_points_1, n_points_2) composition_rot_mat = np.matmul(rot_mat_1, rot_mat_2) composition_rot_vec = rotations.rotation_vector_from_matrix( composition_rot_mat) composition_translation = np.zeros((n_compositions, self.n)) for i in range(n_compositions): translation_1_i = (translation_1[0] if n_points_1 == 1 else translation_1[i]) rot_mat_1_i = (rot_mat_1[0] if n_points_1 == 1 else rot_mat_1[i]) translation_2_i = (translation_2[0] if n_points_2 == 1 else translation_2[i]) composition_translation[i] = (np.dot(translation_2_i, np.transpose(rot_mat_1_i)) + translation_1_i) composition = np.zeros((n_compositions, self.dimension)) composition[:, :dim_rotations] = composition_rot_vec composition[:, dim_rotations:] = composition_translation composition = self.regularize(composition) return composition def inverse(self, point): """ Compute the group inverse in SE(3). Formula: (R, t)^{-1} = (R^{-1}, R^{-1}.(-t)) :param point: 6d vector element in SE(3) :returns inverse_point: 6d vector inverse of point """ rotations = self.rotations dim_rotations = rotations.dimension point = self.regularize(point) n_points, _ = point.shape rot_vec = point[:, :dim_rotations] translation = point[:, dim_rotations:] inverse_point = np.zeros_like(point) inverse_rotation = -rot_vec inv_rot_mat = rotations.matrix_from_rotation_vector(inverse_rotation) inverse_translation = np.zeros((n_points, self.n)) for i in range(n_points): inverse_translation[i] = np.dot(-translation[i], np.transpose(inv_rot_mat[i])) inverse_point[:, :dim_rotations] = inverse_rotation inverse_point[:, dim_rotations:] = inverse_translation inverse_point = self.regularize(inverse_point) return inverse_point def jacobian_translation(self, point, left_or_right='left'): """ Compute the jacobian matrix of the differential of the left/right translations from the identity to point in the Lie group SE(3). :param point: 6D vector element of SE(3) :returns jacobian: 6x6 matrix """ assert self.belongs(point) assert left_or_right in ('left', 'right') dim = self.dimension rotations = self.rotations dim_rotations = rotations.dimension point = self.regularize(point) n_points, _ = point.shape rot_vec = point[:, :dim_rotations] jacobian = np.zeros((n_points,) + (dim,) * 2) if left_or_right == 'left': jacobian_rot = self.rotations.jacobian_translation( point=rot_vec, left_or_right='left') jacobian_trans = self.rotations.matrix_from_rotation_vector( rot_vec) jacobian[:, :dim_rotations, :dim_rotations] = jacobian_rot jacobian[:, dim_rotations:, dim_rotations:] = jacobian_trans else: jacobian_rot = self.rotations.jacobian_translation( point=rot_vec, left_or_right='right') inv_skew_mat = - so_group.skew_matrix_from_vector(rot_vec) jacobian[:, :dim_rotations, :dim_rotations] = jacobian_rot jacobian[:, dim_rotations:, :dim_rotations] = inv_skew_mat jacobian[:, dim_rotations:, dim_rotations:] = np.eye(self.n) assert jacobian.ndim == 3 return jacobian def group_exp_from_identity(self, tangent_vec): """ Compute the group exponential of vector tangent_vector, at point base_point. :param tangent_vector: tangent vector of SE(3) at base_point. :param base_point: 6d vector element of SE(3). :returns group_exp: 6d vector element of SE(3). """ tangent_vec = vectorization.expand_dims(tangent_vec, to_ndim=2) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = tangent_vec[:, :dim_rotations] rot_vec = self.rotations.regularize(rot_vec) translation = tangent_vec[:, dim_rotations:] angle = np.linalg.norm(rot_vec, axis=1) angle = vectorization.expand_dims(angle, to_ndim=2, axis=1) mask_close_pi = np.isclose(angle, np.pi) mask_close_pi = np.squeeze(mask_close_pi, axis=1) rot_vec[mask_close_pi] = rotations.regularize( rot_vec[mask_close_pi]) skew_mat = so_group.skew_matrix_from_vector(rot_vec) sq_skew_mat = np.matmul(skew_mat, skew_mat) mask_0 = np.equal(angle, 0) mask_close_0 = np.isclose(angle, 0) & ~mask_0 mask_0 = np.squeeze(mask_0, axis=1) mask_close_0 = np.squeeze(mask_close_0, axis=1) mask_else = ~mask_0 & ~mask_close_0 coef_1 = np.zeros_like(angle) coef_2 = np.zeros_like(angle) coef_1[mask_0] = 1. / 2. coef_2[mask_0] = 1. / 6. coef_1[mask_close_0] = (1. / 2. - angle[mask_close_0] ** 2 / 24. + angle[mask_close_0] ** 4 / 720. - angle[mask_close_0] ** 6 / 40320.) coef_2[mask_close_0] = (1. / 6. - angle[mask_close_0] ** 2 / 120. + angle[mask_close_0] ** 4 / 5040. - angle[mask_close_0] ** 6 / 362880.) coef_1[mask_else] = ((1. - np.cos(angle[mask_else])) / angle[mask_else] ** 2) coef_2[mask_else] = ((angle[mask_else] - np.sin(angle[mask_else])) / angle[mask_else] ** 3) n_tangent_vecs, _ = tangent_vec.shape group_exp_translation = np.zeros((n_tangent_vecs, self.n)) for i in range(n_tangent_vecs): translation_i = translation[i] term_1_i = coef_1[i] * np.dot(translation_i, np.transpose(skew_mat[i])) term_2_i = coef_2[i] * np.dot(translation_i, np.transpose(sq_skew_mat[i])) group_exp_translation[i] = translation_i + term_1_i + term_2_i group_exp = np.zeros_like(tangent_vec) group_exp[:, :dim_rotations] = rot_vec group_exp[:, dim_rotations:] = group_exp_translation group_exp = self.regularize(group_exp) return group_exp def group_log_from_identity(self, point): """ Compute the group logarithm of point point, from the identity. """ assert self.belongs(point) point = self.regularize(point) rotations = self.rotations dim_rotations = rotations.dimension rot_vec = point[:, :dim_rotations] angle = np.linalg.norm(rot_vec, axis=1) angle = vectorization.expand_dims(angle, to_ndim=2, axis=1) translation = point[:, dim_rotations:] group_log = np.zeros_like(point) group_log[:, :dim_rotations] = rot_vec skew_rot_vec = so_group.skew_matrix_from_vector(rot_vec) sq_skew_rot_vec = np.matmul(skew_rot_vec, skew_rot_vec) mask_close_0 = np.isclose(angle, 0) mask_close_0 = np.squeeze(mask_close_0, axis=1) mask_close_pi = np.isclose(angle, np.pi) mask_close_pi = np.squeeze(mask_close_pi, axis=1) mask_else = ~mask_close_0 & ~mask_close_pi coef_1 = - 0.5 * np.ones_like(angle) coef_2 = np.zeros_like(angle) coef_2[mask_close_0] = (1. / 12. + angle[mask_close_0] ** 2 / 720. + angle[mask_close_0] ** 4 / 30240. + angle[mask_close_0] ** 6 / 1209600.) delta_angle = angle[mask_close_pi] - np.pi coef_2[mask_close_pi] = (1. / PI2 + (PI2 - 8.) * delta_angle / (4. * PI3) - ((PI2 - 12.) * delta_angle ** 2 / (4. * PI4)) + ((-192. + 12. * PI2 + PI4) * delta_angle ** 3 / (48. * PI5)) - ((-240. + 12. * PI2 + PI4) * delta_angle ** 4 / (48. * PI6)) + ((-2880. + 120. * PI2 + 10. * PI4 + PI6) * delta_angle ** 5 / (480. * PI7)) - ((-3360 + 120. * PI2 + 10. * PI4 + PI6) * delta_angle ** 6 / (480. * PI8))) psi = (0.5 * angle[mask_else] * np.sin(angle[mask_else]) / (1 - np.cos(angle[mask_else]))) coef_2[mask_else] = (1 - psi) / (angle[mask_else] ** 2) n_points, _ = point.shape group_log_translation = np.zeros((n_points, self.n)) for i in range(n_points): translation_i = translation[i] term_1_i = coef_1[i] * np.dot(translation_i, np.transpose(skew_rot_vec[i])) term_2_i = coef_2[i] * np.dot(translation_i, np.transpose(sq_skew_rot_vec[i])) group_log_translation[i] = translation_i + term_1_i + term_2_i group_log[:, dim_rotations:] = group_log_translation assert group_log.ndim == 2 return group_log def random_uniform(self, n_samples=1): """ Generate an 6d vector element of SE(3) uniformly, by generating separately a rotation vector uniformly on the hypercube of sides [-1, 1] in the tangent space, and a translation in the hypercube of side [-1, 1] in the euclidean space. """ random_rot_vec = self.rotations.random_uniform(n_samples) random_translation = self.translations.random_uniform(n_samples) random_transfo = np.concatenate([random_rot_vec, random_translation], axis=1) random_transfo = self.regularize(random_transfo) return random_transfo def exponential_matrix(self, rot_vec): """ Compute the exponential of the rotation matrix represented by rot_vec. :param rot_vec: 3D rotation vector :returns exponential_mat: 3x3 matrix """ rot_vec = self.rotations.regularize(rot_vec) n_rot_vecs, _ = rot_vec.shape angle = np.linalg.norm(rot_vec, axis=1) angle = vectorization.expand_dims(angle, to_ndim=2, axis=1) skew_rot_vec = so_group.skew_matrix_from_vector(rot_vec) coef_1 = np.empty_like(angle) coef_2 = np.empty_like(coef_1) mask_0 = np.equal(angle, 0) mask_0 = np.squeeze(mask_0, axis=1) mask_close_to_0 = np.isclose(angle, 0) mask_close_to_0 = np.squeeze(mask_close_to_0, axis=1) mask_else = ~mask_0 & ~mask_close_to_0 coef_1[mask_close_to_0] = (1. / 2. - angle[mask_close_to_0] ** 2 / 24.) coef_2[mask_close_to_0] = (1. / 6. - angle[mask_close_to_0] ** 3 / 120.) # TODO(nina): check if the discountinuity as 0 is expected. coef_1[mask_0] = 0 coef_2[mask_0] = 0 coef_1[mask_else] = (angle[mask_else] ** (-2) * (1. - np.cos(angle[mask_else]))) coef_2[mask_else] = (angle[mask_else] ** (-2) * (1. - (np.sin(angle[mask_else]) / angle[mask_else]))) term_1 = np.zeros((n_rot_vecs, self.n, self.n)) term_2 = np.zeros_like(term_1) for i in range(n_rot_vecs): term_1[i] = np.eye(self.n) + skew_rot_vec[i] * coef_1[i] term_2[i] = np.matmul(skew_rot_vec[i], skew_rot_vec[i]) * coef_2[i] exponential_mat = term_1 + term_2 assert exponential_mat.ndim == 3 return exponential_mat def group_exponential_barycenter(self, points, weights=None): """ Compute the group exponential barycenter. :param points: SE3 data points, Nx6 array :param weights: data point weights, Nx1 array """ n_points = points.shape[0] assert n_points > 0 if weights is None: weights = np.ones((n_points, 1)) weights = vectorization.expand_dims(weights, to_ndim=2, axis=1) n_weights, _ = weights.shape assert n_points == n_weights dim = self.dimension rotations = self.rotations dim_rotations = rotations.dimension rotation_vectors = points[:, :dim_rotations] translations = points[:, dim_rotations:dim] assert rotation_vectors.shape == (n_points, dim_rotations) assert translations.shape == (n_points, self.n) mean_rotation = rotations.group_exponential_barycenter( points=rotation_vectors, weights=weights) mean_rotation_mat = rotations.matrix_from_rotation_vector( mean_rotation) matrix = np.zeros((1,) + (self.n,) * 2) translation_aux = np.zeros((1, self.n)) inv_rot_mats = rotations.matrix_from_rotation_vector( -rotation_vectors) # TODO(nina): this is the same mat multiplied several times matrix_aux = np.matmul(mean_rotation_mat, inv_rot_mats) assert matrix_aux.shape == (n_points,) + (dim_rotations,) * 2 vec_aux = rotations.rotation_vector_from_matrix(matrix_aux) matrix_aux = self.exponential_matrix(vec_aux) matrix_aux = np.linalg.inv(matrix_aux) for i in range(n_points): matrix += weights[i] * matrix_aux[i] translation_aux += weights[i] * np.dot(np.matmul( matrix_aux[i], inv_rot_mats[i]), translations[i]) mean_translation = np.dot(translation_aux, np.transpose(np.linalg.inv(matrix), axes=(0, 2, 1))) exp_bar = np.zeros((1, dim)) exp_bar[0, :dim_rotations] = mean_rotation exp_bar[0, dim_rotations:dim] = mean_translation return exp_bar