def test_leaves(self): """Test that leaves data are beta distribution parameters.""" beta = BetaDistributions() beta_param, distrib_type = data_utils.load_leaves() result = beta.belongs(beta_param) self.assertTrue(gs.all(result)) result = len(distrib_type) expected = beta_param.shape[0] self.assertAllClose(result, expected)
def setUp(self): warnings.simplefilter('ignore', category=UserWarning) self.beta = BetaDistributions() self.metric = BetaMetric() self.n_samples = 10 self.dimension = self.beta.dimension
class TestBetaMethods(geomstats.tests.TestCase): def setUp(self): warnings.simplefilter('ignore', category=UserWarning) self.beta = BetaDistributions() self.metric = BetaMetric() self.n_samples = 10 self.dimension = self.beta.dimension @geomstats.tests.np_and_pytorch_only def test_random_uniform_and_belongs(self): """ Test that the random uniform method samples on the beta distribution space. """ n_samples = self.n_samples point = self.beta.random_uniform(n_samples) result = self.beta.belongs(point) expected = gs.array([True] * n_samples) self.assertAllClose(expected, result) @geomstats.tests.np_and_pytorch_only def test_random_uniform(self): """ Test that the random uniform method samples points of the right shape """ point = self.beta.random_uniform(self.n_samples) self.assertAllClose(gs.shape(point), (self.n_samples, self.dimension)) @geomstats.tests.np_only def test_sample(self): """ Test that the sample method samples variates from beta distributions with the specified parameters, using the law of large numbers """ n_samples = self.n_samples tol = (n_samples * 10)**(-0.5) point = self.beta.random_uniform(n_samples) samples = self.beta.sample(point, n_samples * 10) result = gs.mean(samples, axis=1) expected = point[:, 0] / gs.sum(point, axis=1) self.assertAllClose(result, expected, rtol=tol, atol=tol) @geomstats.tests.np_only def test_maximum_likelihood_fit(self): """ Test that the maximum likelihood fit method recovers parameters of beta distribution. """ n_samples = self.n_samples point = self.beta.random_uniform(n_samples) samples = self.beta.sample(point, n_samples * 10) fits = self.beta.maximum_likelihood_fit(samples) expected = self.beta.belongs(fits) result = gs.array([True] * n_samples) self.assertAllClose(result, expected) @geomstats.tests.np_only def test_exp(self): gs.random.seed(123) n_samples = self.n_samples points = self.beta.random_uniform(n_samples) vectors = self.beta.random_uniform(n_samples) initial_vectors = gs.array([[vec_x, vec_x] for vec_x in vectors[:, 0]]) points = gs.array([[param_a, param_a] for param_a in points[:, 0]]) result_points = self.metric.exp(initial_vectors, points) result = gs.isclose(result_points[:, 0], result_points[:, 1]).all() expected = gs.array([True] * n_samples) self.assertAllClose(expected, result) @geomstats.tests.np_only def test_log_and_exp(self): """ Test that the Riemannian exponential and the Riemannian logarithm are inverse. Expect their composition to give the identity function. """ n_samples = self.n_samples gs.random.seed(123) base_point = self.beta.random_uniform(n_samples=n_samples, bound=5) point = self.beta.random_uniform(n_samples=n_samples, bound=5) log = self.metric.log(point, base_point, n_steps=500) expected = point result = self.metric.exp(tangent_vec=log, base_point=base_point) self.assertAllClose(result, expected, rtol=1e-2) def test_christoffels_vectorization(self): """ Check vectorization of Christoffel symbols in spherical coordinates on the 2-sphere. """ points = self.beta.random_uniform(self.n_samples) christoffel = self.metric.christoffels(points) result = christoffel.shape expected = gs.array( [self.n_samples, self.dimension, self.dimension, self.dimension]) self.assertAllClose(result, expected)
class TestBetaDistributions(geomstats.tests.TestCase): def setUp(self): warnings.simplefilter('ignore', category=UserWarning) self.beta = BetaDistributions() self.metric = BetaMetric() self.n_samples = 10 self.dim = self.beta.dim def test_random_uniform_and_belongs(self): """Test random_uniform and belongs. Test that the random uniform method samples on the beta distribution space. """ point = self.beta.random_uniform() result = self.beta.belongs(point) expected = True self.assertAllClose(expected, result) def test_random_uniform_and_belongs_vectorization(self): """Test random_uniform and belongs. Test that the random uniform method samples on the beta distribution space. """ n_samples = self.n_samples point = self.beta.random_uniform(n_samples) result = self.beta.belongs(point) expected = gs.array([True] * n_samples) self.assertAllClose(expected, result) def test_random_uniform(self): """Test random_uniform. Test that the random uniform method samples points of the right shape """ point = self.beta.random_uniform(self.n_samples) self.assertAllClose(gs.shape(point), (self.n_samples, self.dim)) def test_sample(self): """Test samples. Test that the sample method samples variates from beta distributions with the specified parameters, using the law of large numbers """ n_samples = self.n_samples tol = (n_samples * 10)**(-0.5) point = self.beta.random_uniform(n_samples) samples = self.beta.sample(point, n_samples * 10) result = gs.mean(samples, axis=1) expected = point[:, 0] / gs.sum(point, axis=1) self.assertAllClose(result, expected, rtol=tol, atol=tol) def test_maximum_likelihood_fit(self): """Test maximum likelihood. Test that the maximum likelihood fit method recovers parameters of beta distribution. """ n_samples = self.n_samples point = self.beta.random_uniform(n_samples) samples = self.beta.sample(point, n_samples * 10) fits = self.beta.maximum_likelihood_fit(samples) expected = self.beta.belongs(fits) result = gs.array([True] * n_samples) self.assertAllClose(result, expected) @geomstats.tests.np_only def test_exp(self): """Test Exp. Test that the Riemannian exponential at points on the first bisector computed in the direction of the first bisector stays on the first bisector. """ gs.random.seed(123) n_samples = self.n_samples points = self.beta.random_uniform(n_samples) vectors = self.beta.random_uniform(n_samples) initial_vectors = gs.array([[vec_x, vec_x] for vec_x in vectors[:, 0]]) points = gs.array([[param_a, param_a] for param_a in points[:, 0]]) result_points = self.metric.exp(initial_vectors, points) result = gs.isclose(result_points[:, 0], result_points[:, 1]).all() expected = gs.array([True] * n_samples) self.assertAllClose(expected, result) @geomstats.tests.np_only def test_log_and_exp(self): """Test Log and Exp. Test that the Riemannian exponential and the Riemannian logarithm are inverse. Expect their composition to give the identity function. """ n_samples = self.n_samples gs.random.seed(123) base_point = self.beta.random_uniform(n_samples=n_samples, bound=5) point = self.beta.random_uniform(n_samples=n_samples, bound=5) log = self.metric.log(point, base_point, n_steps=500) expected = point result = self.metric.exp(tangent_vec=log, base_point=base_point) self.assertAllClose(result, expected, rtol=1e-2) @geomstats.tests.np_only def test_exp_vectorization(self): """Test vectorization of Exp. Test the case with one initial point and several tangent vectors. """ point = self.beta.random_uniform() tangent_vec = gs.array([1., 2.]) n_tangent_vecs = 10 t = gs.linspace(0., 1., n_tangent_vecs) tangent_vecs = gs.einsum('i,...k->...ik', t, tangent_vec) end_points = self.metric.exp(tangent_vec=tangent_vecs, base_point=point) result = end_points.shape expected = (n_tangent_vecs, 2) self.assertAllClose(result, expected) @geomstats.tests.np_only def test_log_vectorization(self): """Test vectorization of Log. Test the case with several base points and one end point. """ n_points = 10 base_points = self.beta.random_uniform(n_samples=n_points) point = self.beta.random_uniform() tangent_vecs = self.metric.log(base_point=base_points, point=point) result = tangent_vecs.shape expected = (n_points, 2) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_christoffels_vectorization(self): """Test Christoffel synbols. Check vectorization of Christoffel symbols. """ points = self.beta.random_uniform(self.n_samples) christoffel = self.metric.christoffels(points) result = christoffel.shape expected = gs.array([self.n_samples, self.dim, self.dim, self.dim]) self.assertAllClose(result, expected) def test_metric_matrix(self): point = gs.array([1., 1.]) result = self.beta.metric.metric_matrix(point) expected = gs.array([[1., -0.644934066], [-0.644934066, 1.]]) self.assertAllClose(result, expected) self.assertRaises(ValueError, self.beta.metric.metric_matrix) def test_point_to_pdf(self): """Test point_to_pdf. Check vectorization of the computation of the pdf. """ point = self.beta.random_uniform(n_samples=2) pdf = self.beta.point_to_pdf(point) x = gs.linspace(0., 1., 10) result = pdf(x) pdf1 = beta.pdf(x, a=point[0, 0], b=point[0, 1]) pdf2 = beta.pdf(x, a=point[1, 0], b=point[1, 1]) expected = gs.stack([gs.array(pdf1), gs.array(pdf2)], axis=1) self.assertAllClose(result, expected)