def test_srv_transform_and_srv_transform_inverse(self, rtol, atol): """Test that srv and its inverse are inverse.""" metric = SRVMetric(ambient_manifold=r3) curve = DiscreteCurves(r3).random_point(n_samples=2) srv = metric.srv_transform(curve) srv_inverse = metric.srv_transform_inverse(srv, curve[:, 0]) result = srv.shape expected = (curve.shape[0], curve.shape[1] - 1, 3) self.assertAllClose(result, expected) result = srv_inverse expected = curve self.assertAllClose(result, expected, rtol, atol)
def test_srv_transform_and_inverse(self, times, curve_a, curve_b): """Test of SRVT and its inverse. N.B: Here curves_ab are seen as curves in R3 and not S2. """ l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_ab = curves_ab(times) curves = curves_ab srv_curves = srv_metric_r3.srv_transform(curves) starting_points = curves[:, 0, :] result = srv_metric_r3.srv_transform_inverse(srv_curves, starting_points) expected = curves self.assertAllClose(result, expected)
def test_srv_norm(self, curve_a, curve_b, times): l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_ab = curves_ab(times) srvs_ab = srv_metric_r3.srv_transform(curves_ab) result = srv_metric_r3.l2_curves_metric.norm(srvs_ab) products = srvs_ab * srvs_ab sums = [gs.sum(product) for product in products] squared_norm = gs.array(sums) / (srvs_ab.shape[-2] + 1) expected = gs.sqrt(squared_norm) self.assertAllClose(result, expected) result = result.shape expected = [srvs_ab.shape[0]] self.assertAllClose(result, expected)
def test_srv_inner_product(self, curve_a, curve_b, curve_c, times): l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_bc = l2_metric_s2.geodesic(curve_b, curve_c) curves_ab = curves_ab(times) curves_bc = curves_bc(times) srvs_ab = srv_metric_r3.srv_transform(curves_ab) srvs_bc = srv_metric_r3.srv_transform(curves_bc) result = srv_metric_r3.l2_curves_metric.inner_product(srvs_ab, srvs_bc) products = srvs_ab * srvs_bc expected = [gs.sum(product) for product in products] expected = gs.array(expected) / (srvs_ab.shape[-2] + 1) self.assertAllClose(result, expected) result = result.shape expected = [srvs_ab.shape[0]] self.assertAllClose(result, expected)
def test_aux_differential_srv_transform(self, dim, n_sampling_points, n_curves, curve_fun_a): """Test differential of square root velocity transform. Check that its value at (curve, tangent_vec) coincides with the derivative at zero of the square root velocity transform of a path of curves starting at curve with initial derivative tangent_vec. """ srv_metric_r3 = SRVMetric(r3) sampling_times = gs.linspace(0.0, 1.0, n_sampling_points) curve_a = curve_fun_a(sampling_times) tangent_vec = gs.transpose( gs.tile(gs.linspace(1.0, 2.0, n_sampling_points), (dim, 1))) result = srv_metric_r3.aux_differential_srv_transform( tangent_vec, curve_a) times = gs.linspace(0.0, 1.0, n_curves) path_of_curves = curve_a + gs.einsum("i,jk->ijk", times, tangent_vec) srv_path = srv_metric_r3.srv_transform(path_of_curves) expected = n_curves * (srv_path[1] - srv_path[0]) self.assertAllClose(result, expected, atol=1e-3, rtol=1e-3)