コード例 #1
0
 def test_rotation_vector_rotation_matrix_regularize(self, n, point):
     group = SpecialOrthogonal(n=n)
     rot_mat = group.matrix_from_rotation_vector(gs.array(point))
     self.assertAllClose(
         group.regularize(gs.array(point)),
         group.rotation_vector_from_matrix(rot_mat),
     )
コード例 #2
0
ファイル: utils.py プロジェクト: tristancabel/geomstats
def load_poses(only_rotations=True):
    """Load data from data/poses/poses.csv.

    Returns
    -------
    data : array-like, shape=[5, 3] or shape=[5, 6]
        Array with each row representing one sample,
        i. e. one 3D rotation or one 3D rotation + 3D translation.
    img_paths : list
        List of img paths.
    """
    data = []
    img_paths = []
    so3 = SpecialOrthogonal(n=3, point_type='vector')

    with open(POSES_PATH) as json_file:
        data_file = json.load(json_file)

        for row in data_file:
            pose_mat = gs.array(row['rot_mat'])
            pose_vec = so3.rotation_vector_from_matrix(pose_mat)
            if not only_rotations:
                trans_vec = gs.array(row['trans_mat'])
                pose_vec = gs.concatenate([pose_vec, trans_vec], axis=-1)
            data.append(pose_vec)
            img_paths.append(row['img'])

    data = gs.array(data)
    return data, img_paths
コード例 #3
0
 def test_coincides_with_frechet_so(self):
     point = self.so.random_uniform(self.n_samples)
     estimator = ExponentialBarycenter(self.so, max_iter=32, epsilon=1e-12)
     estimator.fit(point)
     result = estimator.estimate_
     print(self.so.default_point_type)
     so_vector = SpecialOrthogonal(3, default_point_type='vector')
     frechet_estimator = FrechetMean(so_vector.bi_invariant_metric,
                                     max_iter=32,
                                     epsilon=1e-10,
                                     point_type='vector')
     vector_point = so_vector.rotation_vector_from_matrix(point)
     frechet_estimator.fit(vector_point)
     mean = frechet_estimator.estimate_
     expected = so_vector.matrix_from_rotation_vector(mean)
     result = estimator.estimate_
     self.assertAllClose(result, expected)
コード例 #4
0
class TestFrechetMean(geomstats.tests.TestCase):
    _multiprocess_can_split_ = True

    def setUp(self):
        gs.random.seed(123)
        self.sphere = Hypersphere(dim=4)
        self.hyperbolic = Hyperboloid(dim=3)
        self.euclidean = Euclidean(dim=2)
        self.minkowski = Minkowski(dim=2)
        self.so3 = SpecialOrthogonal(n=3, point_type='vector')
        self.so_matrix = SpecialOrthogonal(n=3)

    def test_logs_at_mean_default_gradient_descent_sphere(self):
        n_tests = 10
        estimator = FrechetMean(
            metric=self.sphere.metric, method='default', lr=1.)

        result = []
        for _ in range(n_tests):
            # take 2 random points, compute their mean, and verify that
            # log of each at the mean is opposite
            points = self.sphere.random_uniform(n_samples=2)
            estimator.fit(points)
            mean = estimator.estimate_

            logs = self.sphere.metric.log(point=points, base_point=mean)
            result.append(gs.linalg.norm(logs[1, :] + logs[0, :]))
        result = gs.stack(result)
        expected = gs.zeros(n_tests)
        self.assertAllClose(expected, result)

    def test_logs_at_mean_adaptive_gradient_descent_sphere(self):
        n_tests = 10
        estimator = FrechetMean(metric=self.sphere.metric, method='adaptive')

        result = []
        for _ in range(n_tests):
            # take 2 random points, compute their mean, and verify that
            # log of each at the mean is opposite
            points = self.sphere.random_uniform(n_samples=2)
            estimator.fit(points)
            mean = estimator.estimate_

            logs = self.sphere.metric.log(point=points, base_point=mean)
            result.append(gs.linalg.norm(logs[1, :] + logs[0, :]))
        result = gs.stack(result)

        expected = gs.zeros(n_tests)
        self.assertAllClose(expected, result)

    def test_estimate_shape_default_gradient_descent_sphere(self):
        dim = 5
        point_a = gs.array([1., 0., 0., 0., 0.])
        point_b = gs.array([0., 1., 0., 0., 0.])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(
            metric=self.sphere.metric, method='default', verbose=True)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim,))

    def test_estimate_shape_adaptive_gradient_descent_sphere(self):
        dim = 5
        point_a = gs.array([1., 0., 0., 0., 0.])
        point_b = gs.array([0., 1., 0., 0., 0.])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method='adaptive')
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim,))

    def test_estimate_and_belongs_default_gradient_descent_sphere(self):
        point_a = gs.array([1., 0., 0., 0., 0.])
        point_b = gs.array([0., 1., 0., 0., 0.])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method='default')
        mean.fit(points)

        result = self.sphere.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    def test_estimate_default_gradient_descent_so3(self):
        points = self.so3.random_uniform(2)

        mean_vec = FrechetMean(
            metric=self.so3.bi_invariant_metric, method='default', lr=1.)
        mean_vec.fit(points)

        logs = self.so3.bi_invariant_metric.log(points, mean_vec.estimate_)
        result = gs.sum(logs, axis=0)
        expected = gs.zeros_like(points[0])
        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_default_gradient_descent_so3(self):
        point = self.so3.random_uniform(10)

        mean_vec = FrechetMean(
            metric=self.so3.bi_invariant_metric, method='default')
        mean_vec.fit(point)

        result = self.so3.belongs(mean_vec.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_estimate_default_gradient_descent_so_matrix(self):
        points = self.so_matrix.random_uniform(2)
        mean_vec = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric, method='default',
            lr=1.)
        mean_vec.fit(points)
        logs = self.so_matrix.bi_invariant_metric.log(
            points, mean_vec.estimate_)
        result = gs.sum(logs, axis=0)
        expected = gs.zeros_like(points[0])

        self.assertAllClose(result, expected, atol=1e-5)

    @geomstats.tests.np_and_tf_only
    def test_estimate_and_belongs_default_gradient_descent_so_matrix(self):
        point = self.so_matrix.random_uniform(10)

        mean = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric, method='default')
        mean.fit(point)

        result = self.so_matrix.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_estimate_and_belongs_adaptive_gradient_descent_so_matrix(self):
        point = self.so_matrix.random_uniform(10)

        mean = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric, method='adaptive',
            verbose=True, lr=.5)
        mean.fit(point)

        result = self.so_matrix.belongs(mean.estimate_)
        self.assertTrue(result)

    @geomstats.tests.np_and_tf_only
    def test_estimate_and_coincide_default_so_vec_and_mat(self):
        point = self.so_matrix.random_uniform(3)

        mean = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric, method='default')
        mean.fit(point)
        expected = mean.estimate_

        mean_vec = FrechetMean(
            metric=self.so3.bi_invariant_metric, method='default')
        point_vec = self.so3.rotation_vector_from_matrix(point)
        mean_vec.fit(point_vec)
        result_vec = mean_vec.estimate_
        result = self.so3.matrix_from_rotation_vector(result_vec)

        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_adaptive_gradient_descent_sphere(self):
        point_a = gs.array([1., 0., 0., 0., 0.])
        point_b = gs.array([0., 1., 0., 0., 0.])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method='adaptive')
        mean.fit(points)

        result = self.sphere.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    def test_variance_sphere(self):
        point = gs.array([0., 0., 0., 0., 1.])
        points = gs.array([point, point])

        result = variance(
            points, base_point=point, metric=self.sphere.metric)
        expected = gs.array(0.)

        self.assertAllClose(expected, result)

    def test_estimate_default_gradient_descent_sphere(self):
        point = gs.array([0., 0., 0., 0., 1.])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.sphere.metric, method='default')
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_adaptive_gradient_descent_sphere(self):
        point = gs.array([0., 0., 0., 0., 1.])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.sphere.metric, method='adaptive')
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_spd(self):
        point = SPDMatrices(3).random_point()
        points = gs.array([point, point])
        mean = FrechetMean(metric=SPDMetricAffine(3), point_type='matrix')
        mean.fit(X=points)
        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)

    def test_variance_hyperbolic(self):
        point = gs.array([2., 1., 1., 1.])
        points = gs.array([point, point])
        result = variance(
            points, base_point=point, metric=self.hyperbolic.metric)
        expected = gs.array(0.)

        self.assertAllClose(result, expected)

    def test_estimate_hyperbolic(self):
        point = gs.array([2., 1., 1., 1.])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.hyperbolic.metric)
        mean.fit(X=points)
        expected = point

        result = mean.estimate_

        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_hyperbolic(self):
        point_a = self.hyperbolic.random_point()
        point_b = self.hyperbolic.random_point()
        point_c = self.hyperbolic.random_point()
        points = gs.stack([point_a, point_b, point_c], axis=0)

        mean = FrechetMean(metric=self.hyperbolic.metric)
        mean.fit(X=points)

        result = self.hyperbolic.belongs(mean.estimate_)
        expected = True

        self.assertAllClose(result, expected)

    def test_mean_euclidean_shape(self):
        dim = 2
        point = gs.array([1., 4.])

        mean = FrechetMean(metric=self.euclidean.metric)
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim,))

    def test_mean_euclidean(self):
        point = gs.array([1., 4.])

        mean = FrechetMean(metric=self.euclidean.metric)
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(result, expected)

        points = gs.array([
            [1., 2.],
            [2., 3.],
            [3., 4.],
            [4., 5.]])
        weights = [1., 2., 1., 2.]

        mean = FrechetMean(metric=self.euclidean.metric)
        mean.fit(points, weights=weights)

        result = mean.estimate_
        expected = gs.array([16. / 6., 22. / 6.])

        self.assertAllClose(result, expected)

    def test_variance_euclidean(self):
        points = gs.array([
            [1., 2.],
            [2., 3.],
            [3., 4.],
            [4., 5.]])
        weights = gs.array([1., 2., 1., 2.])
        base_point = gs.zeros(2)
        result = variance(
            points, weights=weights, base_point=base_point,
            metric=self.euclidean.metric)
        # we expect the average of the points' sq norms.
        expected = gs.array((1 * 5. + 2 * 13. + 1 * 25. + 2 * 41.) / 6.)

        self.assertAllClose(result, expected)

    def test_mean_matrices_shape(self):
        m, n = (2, 2)
        point = gs.array([
            [1., 4.],
            [2., 3.]])

        metric = MatricesMetric(m, n)
        mean = FrechetMean(metric=metric, point_type='matrix')
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (m, n))

    def test_mean_matrices(self):
        m, n = (2, 2)
        point = gs.array([
            [1., 4.],
            [2., 3.]])

        metric = MatricesMetric(m, n)
        mean = FrechetMean(metric=metric, point_type='matrix')
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(result, expected)

    def test_mean_minkowski_shape(self):
        dim = 2
        point = gs.array([2., -math.sqrt(3)])
        points = [point, point, point]

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim,))

    def test_mean_minkowski(self):
        point = gs.array([2., -math.sqrt(3)])
        points = [point, point, point]

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points)
        result = mean.estimate_

        expected = point

        self.assertAllClose(result, expected)

        points = gs.array([
            [1., 0.],
            [2., math.sqrt(3)],
            [3., math.sqrt(8)],
            [4., math.sqrt(24)]])
        weights = gs.array([1., 2., 1., 2.])

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points, weights=weights)
        result = mean.estimate_
        result = self.minkowski.belongs(result)
        expected = gs.array(True)

        self.assertAllClose(result, expected)

    def test_variance_minkowski(self):
        points = gs.array([
            [1., 0.],
            [2., math.sqrt(3)],
            [3., math.sqrt(8)],
            [4., math.sqrt(24)]])
        weights = gs.array([1., 2., 1., 2.])
        base_point = gs.array([-1., 0.])
        var = variance(
            points, weights=weights, base_point=base_point,
            metric=self.minkowski.metric)
        result = var != 0
        # we expect the average of the points' Minkowski sq norms.
        expected = True
        self.assertAllClose(result, expected)

    def test_one_point(self):
        point = gs.array([0., 0., 0., 0., 1.])

        mean = FrechetMean(metric=self.sphere.metric, method='default')
        mean.fit(X=point)

        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)

        mean = FrechetMean(
            metric=self.sphere.metric, method='frechet-poincare-ball')
        mean.fit(X=point)

        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)
コード例 #5
0
class TestFrechetMean(geomstats.tests.TestCase):
    _multiprocess_can_split_ = True

    def setup_method(self):
        gs.random.seed(123)
        self.sphere = Hypersphere(dim=4)
        self.hyperbolic = Hyperboloid(dim=3)
        self.euclidean = Euclidean(dim=2)
        self.minkowski = Minkowski(dim=2)
        self.so3 = SpecialOrthogonal(n=3, point_type="vector")
        self.so_matrix = SpecialOrthogonal(n=3)
        self.curves_2d = DiscreteCurves(R2)
        self.elastic_metric = ElasticMetric(a=1, b=1, ambient_manifold=R2)

    def test_logs_at_mean_curves_2d(self):
        n_tests = 10
        metric = self.curves_2d.srv_metric
        estimator = FrechetMean(metric=metric, init_step_size=1.0)

        result = []
        for _ in range(n_tests):
            # take 2 random points, compute their mean, and verify that
            # log of each at the mean is opposite
            points = self.curves_2d.random_point(n_samples=2)
            estimator.fit(points)
            mean = estimator.estimate_

            # Expand and tile are added because of GitHub issue 1575
            mean = gs.expand_dims(mean, axis=0)
            mean = gs.tile(mean, (2, 1, 1))

            logs = metric.log(point=points, base_point=mean)
            logs_srv = metric.aux_differential_srv_transform(logs, curve=mean)
            # Note that the logs are NOT inverse, only the logs_srv are.
            result.append(gs.linalg.norm(logs_srv[1, :] + logs_srv[0, :]))
        result = gs.stack(result)
        expected = gs.zeros(n_tests)
        self.assertAllClose(expected, result, atol=1e-5)

    def test_logs_at_mean_default_gradient_descent_sphere(self):
        n_tests = 10
        estimator = FrechetMean(metric=self.sphere.metric,
                                method="default",
                                init_step_size=1.0)

        result = []
        for _ in range(n_tests):
            # take 2 random points, compute their mean, and verify that
            # log of each at the mean is opposite
            points = self.sphere.random_uniform(n_samples=2)
            estimator.fit(points)
            mean = estimator.estimate_

            logs = self.sphere.metric.log(point=points, base_point=mean)
            result.append(gs.linalg.norm(logs[1, :] + logs[0, :]))
        result = gs.stack(result)
        expected = gs.zeros(n_tests)
        self.assertAllClose(expected, result)

    def test_logs_at_mean_adaptive_gradient_descent_sphere(self):
        n_tests = 10
        estimator = FrechetMean(metric=self.sphere.metric, method="adaptive")

        result = []
        for _ in range(n_tests):
            # take 2 random points, compute their mean, and verify that
            # log of each at the mean is opposite
            points = self.sphere.random_uniform(n_samples=2)
            estimator.fit(points)
            mean = estimator.estimate_

            logs = self.sphere.metric.log(point=points, base_point=mean)
            result.append(gs.linalg.norm(logs[1, :] + logs[0, :]))
        result = gs.stack(result)

        expected = gs.zeros(n_tests)
        self.assertAllClose(expected, result)

    def test_estimate_shape_default_gradient_descent_sphere(self):
        dim = 5
        point_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        point_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric,
                           method="default",
                           verbose=True)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim, ))

    def test_estimate_shape_adaptive_gradient_descent_sphere(self):
        dim = 5
        point_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        point_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method="adaptive")
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim, ))

    def test_estimate_shape_elastic_metric(self):
        points = self.curves_2d.random_point(n_samples=2)

        mean = FrechetMean(metric=self.elastic_metric)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (points.shape[1:]))

    def test_estimate_shape_metric(self):
        points = self.curves_2d.random_point(n_samples=2)

        mean = FrechetMean(metric=self.curves_2d.srv_metric)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (points.shape[1:]))

    def test_estimate_and_belongs_default_gradient_descent_sphere(self):
        point_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        point_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method="default")
        mean.fit(points)

        result = self.sphere.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_curves_2d(self):
        points = self.curves_2d.random_point(n_samples=2)

        mean = FrechetMean(metric=self.curves_2d.srv_metric)
        mean.fit(points)

        result = self.curves_2d.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    def test_estimate_default_gradient_descent_so3(self):
        points = self.so3.random_uniform(2)

        mean_vec = FrechetMean(metric=self.so3.bi_invariant_metric,
                               method="default",
                               init_step_size=1.0)
        mean_vec.fit(points)

        logs = self.so3.bi_invariant_metric.log(points, mean_vec.estimate_)
        result = gs.sum(logs, axis=0)
        expected = gs.zeros_like(points[0])
        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_default_gradient_descent_so3(self):
        point = self.so3.random_uniform(10)

        mean_vec = FrechetMean(metric=self.so3.bi_invariant_metric,
                               method="default")
        mean_vec.fit(point)

        result = self.so3.belongs(mean_vec.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_tf_only
    def test_estimate_default_gradient_descent_so_matrix(self):
        points = self.so_matrix.random_uniform(2)
        mean_vec = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric,
            method="default",
            init_step_size=1.0,
        )
        mean_vec.fit(points)
        logs = self.so_matrix.bi_invariant_metric.log(points,
                                                      mean_vec.estimate_)
        result = gs.sum(logs, axis=0)
        expected = gs.zeros_like(points[0])

        self.assertAllClose(result, expected, atol=1e-5)

    @geomstats.tests.np_autograd_and_tf_only
    def test_estimate_and_belongs_default_gradient_descent_so_matrix(self):
        point = self.so_matrix.random_uniform(10)

        mean = FrechetMean(metric=self.so_matrix.bi_invariant_metric,
                           method="default")
        mean.fit(point)

        result = self.so_matrix.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_tf_only
    def test_estimate_and_belongs_adaptive_gradient_descent_so_matrix(self):
        point = self.so_matrix.random_uniform(10)

        mean = FrechetMean(
            metric=self.so_matrix.bi_invariant_metric,
            method="adaptive",
            init_step_size=0.5,
            verbose=True,
        )
        mean.fit(point)

        result = self.so_matrix.belongs(mean.estimate_)
        self.assertTrue(result)

    @geomstats.tests.np_autograd_and_tf_only
    def test_estimate_and_coincide_default_so_vec_and_mat(self):
        point = self.so_matrix.random_uniform(3)

        mean = FrechetMean(metric=self.so_matrix.bi_invariant_metric,
                           method="default")
        mean.fit(point)
        expected = mean.estimate_

        mean_vec = FrechetMean(metric=self.so3.bi_invariant_metric,
                               method="default")
        point_vec = self.so3.rotation_vector_from_matrix(point)
        mean_vec.fit(point_vec)
        result_vec = mean_vec.estimate_
        result = self.so3.matrix_from_rotation_vector(result_vec)

        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_adaptive_gradient_descent_sphere(self):
        point_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        point_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        points = gs.array([point_a, point_b])

        mean = FrechetMean(metric=self.sphere.metric, method="adaptive")
        mean.fit(points)

        result = self.sphere.belongs(mean.estimate_)
        expected = True
        self.assertAllClose(result, expected)

    def test_variance_sphere(self):
        point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])
        points = gs.array([point, point])

        result = variance(points, base_point=point, metric=self.sphere.metric)
        expected = gs.array(0.0)

        self.assertAllClose(expected, result)

    def test_estimate_default_gradient_descent_sphere(self):
        point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.sphere.metric, method="default")
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_elastic_metric(self):
        point = self.curves_2d.random_point(n_samples=1)
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.elastic_metric)
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_curves_2d(self):
        point = self.curves_2d.random_point(n_samples=1)
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.curves_2d.srv_metric)
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_adaptive_gradient_descent_sphere(self):
        point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.sphere.metric, method="adaptive")
        mean.fit(X=points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(expected, result)

    def test_estimate_spd(self):
        point = SPDMatrices(3).random_point()
        points = gs.array([point, point])
        mean = FrechetMean(metric=SPDMetricAffine(3), point_type="matrix")
        mean.fit(X=points)
        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)

    def test_estimate_spd_two_samples(self):
        space = SPDMatrices(3)
        metric = SPDMetricAffine(3)
        point = space.random_point(2)
        mean = FrechetMean(metric)
        mean.fit(point)
        result = mean.estimate_
        expected = metric.exp(metric.log(point[0], point[1]) / 2, point[1])
        self.assertAllClose(expected, result)

    def test_variance_hyperbolic(self):
        point = gs.array([2.0, 1.0, 1.0, 1.0])
        points = gs.array([point, point])
        result = variance(points,
                          base_point=point,
                          metric=self.hyperbolic.metric)
        expected = gs.array(0.0)

        self.assertAllClose(result, expected)

    def test_estimate_hyperbolic(self):
        point = gs.array([2.0, 1.0, 1.0, 1.0])
        points = gs.array([point, point])

        mean = FrechetMean(metric=self.hyperbolic.metric)
        mean.fit(X=points)
        expected = point

        result = mean.estimate_

        self.assertAllClose(result, expected)

    def test_estimate_and_belongs_hyperbolic(self):
        point_a = self.hyperbolic.random_point()
        point_b = self.hyperbolic.random_point()
        point_c = self.hyperbolic.random_point()
        points = gs.stack([point_a, point_b, point_c], axis=0)

        mean = FrechetMean(metric=self.hyperbolic.metric)
        mean.fit(X=points)

        result = self.hyperbolic.belongs(mean.estimate_)
        expected = True

        self.assertAllClose(result, expected)

    def test_mean_euclidean_shape(self):
        dim = 2
        point = gs.array([1.0, 4.0])

        mean = FrechetMean(metric=self.euclidean.metric)
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim, ))

    def test_mean_euclidean(self):
        point = gs.array([1.0, 4.0])

        mean = FrechetMean(metric=self.euclidean.metric)
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(result, expected)

        points = gs.array([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]])
        weights = [1.0, 2.0, 1.0, 2.0]

        mean = FrechetMean(metric=self.euclidean.metric)
        mean.fit(points, weights=weights)

        result = mean.estimate_
        expected = gs.array([16.0 / 6.0, 22.0 / 6.0])

        self.assertAllClose(result, expected)

    def test_variance_euclidean(self):
        points = gs.array([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]])
        weights = gs.array([1.0, 2.0, 1.0, 2.0])
        base_point = gs.zeros(2)
        result = variance(points,
                          weights=weights,
                          base_point=base_point,
                          metric=self.euclidean.metric)
        # we expect the average of the points' sq norms.
        expected = gs.array((1 * 5.0 + 2 * 13.0 + 1 * 25.0 + 2 * 41.0) / 6.0)

        self.assertAllClose(result, expected)

    def test_mean_matrices_shape(self):
        m, n = (2, 2)
        point = gs.array([[1.0, 4.0], [2.0, 3.0]])

        metric = MatricesMetric(m, n)
        mean = FrechetMean(metric=metric, point_type="matrix")
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (m, n))

    def test_mean_matrices(self):
        m, n = (2, 2)
        point = gs.array([[1.0, 4.0], [2.0, 3.0]])

        metric = MatricesMetric(m, n)
        mean = FrechetMean(metric=metric, point_type="matrix")
        points = [point, point, point]
        mean.fit(points)

        result = mean.estimate_
        expected = point

        self.assertAllClose(result, expected)

    def test_mean_minkowski_shape(self):
        dim = 2
        point = gs.array([2.0, -math.sqrt(3)])
        points = [point, point, point]

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points)
        result = mean.estimate_

        self.assertAllClose(gs.shape(result), (dim, ))

    def test_mean_minkowski(self):
        point = gs.array([2.0, -math.sqrt(3)])
        points = [point, point, point]

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points)
        result = mean.estimate_

        expected = point

        self.assertAllClose(result, expected)

        points = gs.array([[1.0, 0.0], [2.0, math.sqrt(3)],
                           [3.0, math.sqrt(8)], [4.0, math.sqrt(24)]])
        weights = gs.array([1.0, 2.0, 1.0, 2.0])

        mean = FrechetMean(metric=self.minkowski.metric)
        mean.fit(points, weights=weights)
        result = self.minkowski.belongs(mean.estimate_)

        self.assertTrue(result)

    def test_variance_minkowski(self):
        points = gs.array([[1.0, 0.0], [2.0, math.sqrt(3)],
                           [3.0, math.sqrt(8)], [4.0, math.sqrt(24)]])
        weights = gs.array([1.0, 2.0, 1.0, 2.0])
        base_point = gs.array([-1.0, 0.0])
        var = variance(points,
                       weights=weights,
                       base_point=base_point,
                       metric=self.minkowski.metric)
        result = var != 0
        # we expect the average of the points' Minkowski sq norms.
        expected = True
        self.assertAllClose(result, expected)

    def test_one_point(self):
        point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])

        mean = FrechetMean(metric=self.sphere.metric, method="default")
        mean.fit(X=point)

        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)

        mean = FrechetMean(metric=self.sphere.metric, method="default")
        mean.fit(X=point)

        result = mean.estimate_
        expected = point
        self.assertAllClose(expected, result)

    def test_batched(self):
        space = SPDMatrices(3)
        metric = SPDMetricAffine(3)
        point = space.random_point(4)
        mean_batch = FrechetMean(metric, method="batch", verbose=True)
        data = gs.stack([point[:2], point[2:]], axis=1)
        mean_batch.fit(data)
        result = mean_batch.estimate_

        mean = FrechetMean(metric)
        mean.fit(data[:, 0])
        expected_1 = mean.estimate_
        mean.fit(data[:, 1])
        expected_2 = mean.estimate_
        expected = gs.stack([expected_1, expected_2])
        self.assertAllClose(expected, result)

    @geomstats.tests.np_and_autograd_only
    def test_stiefel_two_samples(self):
        space = Stiefel(3, 2)
        metric = space.metric
        point = space.random_point(2)
        mean = FrechetMean(metric)
        mean.fit(point)
        result = mean.estimate_
        expected = metric.exp(metric.log(point[0], point[1]) / 2, point[1])
        self.assertAllClose(expected, result)

    @geomstats.tests.np_and_autograd_only
    def test_stiefel_n_samples(self):
        space = Stiefel(3, 2)
        metric = space.metric
        point = space.random_point(2)
        mean = FrechetMean(metric,
                           method="default",
                           init_step_size=0.5,
                           verbose=True)
        mean.fit(point)
        result = space.belongs(mean.estimate_)
        self.assertTrue(result)

    def test_circle_mean(self):
        space = Hypersphere(1)
        points = space.random_uniform(10)
        mean_circle = FrechetMean(space.metric)
        mean_circle.fit(points)
        estimate_circle = mean_circle.estimate_

        # set a wrong dimension so that the extrinsic coordinates are used
        metric = space.metric
        metric.dim = 2
        mean_extrinsic = FrechetMean(metric)
        mean_extrinsic.fit(points)
        estimate_extrinsic = mean_extrinsic.estimate_
        self.assertAllClose(estimate_circle, estimate_extrinsic)
コード例 #6
0
class TestSpecialOrthogonal2(geomstats.tests.TestCase):
    def setup_method(self):
        warnings.simplefilter("ignore", category=ImportWarning)
        warnings.simplefilter("ignore", category=UserWarning)

        gs.random.seed(1234)

        self.group = SpecialOrthogonal(n=2, point_type="vector")

        # -- Set attributes
        self.n_samples = 4

    def test_projection(self):
        # Test 2D and nD cases
        rot_mat = gs.eye(2)
        delta = 1e-12 * gs.ones((2, 2))
        rot_mat_plus_delta = rot_mat + delta
        result = self.group.projection(rot_mat_plus_delta)
        expected = rot_mat
        self.assertAllClose(result, expected)

    def test_projection_vectorization(self):
        n_samples = self.n_samples
        mats = gs.ones((n_samples, 2, 2))
        result = self.group.projection(mats)
        self.assertAllClose(gs.shape(result), (n_samples, 2, 2))

    def test_skew_matrix_from_vector(self):
        rot_vec = gs.array([0.9])
        skew_matrix = self.group.skew_matrix_from_vector(rot_vec)
        result = gs.matmul(skew_matrix, skew_matrix)
        diag = gs.array([-0.81, -0.81])
        expected = algebra_utils.from_vector_to_diagonal_matrix(diag)
        self.assertAllClose(result, expected)

    def test_skew_matrix_and_vector(self):
        rot_vec = gs.array([0.8])

        skew_mat = self.group.skew_matrix_from_vector(rot_vec)
        result = self.group.vector_from_skew_matrix(skew_mat)
        expected = rot_vec

        self.assertAllClose(result, expected)

    def test_skew_matrix_from_vector_vectorization(self):
        n_samples = self.n_samples
        rot_vecs = self.group.random_uniform(n_samples=n_samples)
        result = self.group.skew_matrix_from_vector(rot_vecs)

        self.assertAllClose(gs.shape(result), (n_samples, 2, 2))

    def test_random_uniform_shape(self):
        result = self.group.random_uniform()
        self.assertAllClose(gs.shape(result), (self.group.dim, ))

    def test_random_and_belongs(self):
        point = self.group.random_uniform()
        result = self.group.belongs(point)
        expected = True
        self.assertAllClose(result, expected)

    def test_random_and_belongs_vectorization(self):
        n_samples = self.n_samples
        points = self.group.random_uniform(n_samples=n_samples)
        result = self.group.belongs(points)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    def test_regularize(self):
        angle = 2 * gs.pi + 1
        result = self.group.regularize(gs.array([angle]))
        expected = gs.array([1.0])
        self.assertAllClose(result, expected)

    def test_regularize_vectorization(self):
        n_samples = self.n_samples
        rot_vecs = self.group.random_uniform(n_samples=n_samples)
        result = self.group.regularize(rot_vecs)

        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

    def test_matrix_from_rotation_vector(self):
        angle = gs.pi / 3
        expected = gs.array([[1.0 / 2, -gs.sqrt(3.0) / 2],
                             [gs.sqrt(3.0) / 2, 1.0 / 2]])
        result = self.group.matrix_from_rotation_vector(gs.array([angle]))
        self.assertAllClose(result, expected)

    def test_matrix_from_rotation_vector_vectorization(self):
        n_samples = self.n_samples
        rot_vecs = self.group.random_uniform(n_samples=n_samples)

        rot_mats = self.group.matrix_from_rotation_vector(rot_vecs)

        self.assertAllClose(gs.shape(rot_mats),
                            (n_samples, self.group.n, self.group.n))

    def test_rotation_vector_from_matrix(self):
        angle = 0.12
        rot_mat = gs.array([[gs.cos(angle), -gs.sin(angle)],
                            [gs.sin(angle), gs.cos(angle)]])
        result = self.group.rotation_vector_from_matrix(rot_mat)
        expected = gs.array([0.12])

        self.assertAllClose(result, expected)

    def test_rotation_vector_and_rotation_matrix(self):
        """
        This tests that the composition of
        rotation_vector_from_matrix
        and
        matrix_from_rotation_vector
        is the identity.
        """
        # TODO(nguigs): bring back a 1d representation of SO2
        point = gs.array([0.78])

        rot_mat = self.group.matrix_from_rotation_vector(point)
        result = self.group.rotation_vector_from_matrix(rot_mat)

        expected = point

        self.assertAllClose(result, expected)

    def test_rotation_vector_and_rotation_matrix_vectorization(self):
        rot_vecs = gs.array([[2.0], [1.3], [0.8], [0.03]])

        rot_mats = self.group.matrix_from_rotation_vector(rot_vecs)
        result = self.group.rotation_vector_from_matrix(rot_mats)

        expected = self.group.regularize(rot_vecs)

        self.assertAllClose(result, expected)

    def test_compose(self):
        point_a = gs.array([0.12])
        point_b = gs.array([-0.15])
        result = self.group.compose(point_a, point_b)
        expected = self.group.regularize(gs.array([-0.03]))
        self.assertAllClose(result, expected)

    def test_compose_and_inverse(self):
        angle = 0.986
        point = gs.array([angle])
        inv_point = self.group.inverse(point)
        result = self.group.compose(point, inv_point)
        expected = self.group.identity
        self.assertAllClose(result, expected)

        result = self.group.compose(inv_point, point)
        expected = self.group.identity
        self.assertAllClose(result, expected)

    def test_compose_vectorization(self):
        point_type = "vector"
        self.group.default_point_type = point_type

        n_samples = self.n_samples
        n_points_a = self.group.random_uniform(n_samples=n_samples)
        n_points_b = self.group.random_uniform(n_samples=n_samples)
        one_point = self.group.random_uniform(n_samples=1)

        result = self.group.compose(one_point, n_points_a)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        result = self.group.compose(n_points_a, one_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        result = self.group.compose(n_points_a, n_points_b)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

    def test_inverse_vectorization(self):
        n_samples = self.n_samples
        points = self.group.random_uniform(n_samples=n_samples)
        result = self.group.inverse(points)

        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

    def test_group_exp(self):
        """
        The Riemannian exp and log are inverse functions of each other.
        This test is the inverse of test_log's.
        """
        rot_vec_base_point = gs.array([gs.pi / 5])
        rot_vec = gs.array([2 * gs.pi / 5])

        expected = gs.array([3 * gs.pi / 5])
        result = self.group.exp(base_point=rot_vec_base_point,
                                tangent_vec=rot_vec)
        self.assertAllClose(result, expected)

    def test_group_exp_vectorization(self):
        n_samples = self.n_samples

        one_tangent_vec = self.group.random_uniform(n_samples=1)
        one_base_point = self.group.random_uniform(n_samples=1)
        n_tangent_vec = self.group.random_uniform(n_samples=n_samples)
        n_base_point = self.group.random_uniform(n_samples=n_samples)

        # Test with the 1 base point, and n tangent vecs
        result = self.group.exp(n_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        # Test with the several base point, and one tangent vec
        result = self.group.exp(one_tangent_vec, n_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        # Test with the same number n of base point and n tangent vec
        result = self.group.exp(n_tangent_vec, n_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

    def test_group_log(self):
        """
        The Riemannian exp and log are inverse functions of each other.
        This test is the inverse of test_exp's.
        """
        rot_vec_base_point = gs.array([gs.pi / 5])
        rot_vec = gs.array([2 * gs.pi / 5])

        expected = gs.array([1 * gs.pi / 5])
        result = self.group.log(point=rot_vec, base_point=rot_vec_base_point)
        self.assertAllClose(result, expected)

    def test_group_log_vectorization(self):
        n_samples = self.n_samples

        one_point = self.group.random_uniform(n_samples=1)
        one_base_point = self.group.random_uniform(n_samples=1)
        n_point = self.group.random_uniform(n_samples=n_samples)
        n_base_point = self.group.random_uniform(n_samples=n_samples)

        # Test with the 1 base point, and several different points
        result = self.group.log(n_point, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        # Test with the several base point, and 1 point
        result = self.group.log(one_point, n_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

        # Test with the same number n of base point and point
        result = self.group.log(n_point, n_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, self.group.dim))

    def test_group_exp_then_log_from_identity(self):
        """
        Test that the group exponential
        and the group logarithm are inverse.
        Expect their composition to give the identity function.
        """
        tangent_vec = gs.array([0.12])
        result = helper.group_exp_then_log_from_identity(
            group=self.group, tangent_vec=tangent_vec)
        expected = self.group.regularize(tangent_vec)
        self.assertAllClose(result, expected)

    def test_group_log_then_exp_from_identity(self):
        """
        Test that the group exponential
        and the group logarithm are inverse.
        Expect their composition to give the identity function.
        """
        point = gs.array([0.12])
        result = helper.group_log_then_exp_from_identity(group=self.group,
                                                         point=point)
        expected = self.group.regularize(point)
        self.assertAllClose(result, expected)

    def test_group_exp_then_log(self):
        """
        This tests that the composition of
        log and exp gives identity.

        """
        base_point = gs.array([0.12])
        tangent_vec = gs.array([0.35])

        result = helper.group_exp_then_log(group=self.group,
                                           tangent_vec=tangent_vec,
                                           base_point=base_point)

        expected = self.group.regularize_tangent_vec(tangent_vec=tangent_vec,
                                                     base_point=base_point)

        self.assertAllClose(result, expected)

    def test_group_log_then_exp(self):
        """
        This tests that the composition of
        log and exp gives identity.
        """
        base_point = gs.array([0.12])
        point = gs.array([0.35])

        result = helper.group_log_then_exp(group=self.group,
                                           point=point,
                                           base_point=base_point)

        expected = self.group.regularize(point)

        self.assertAllClose(result, expected)