def test_estimate_one_sample_se(self): point = self.se_mat.random_point() estimator = ExponentialBarycenter(self.se_mat) estimator.fit(point) result = estimator.estimate_ expected = point self.assertAllClose(result, expected) point = self.so_vec.random_uniform(1) estimator = ExponentialBarycenter(self.so_vec) estimator.fit(point) result = estimator.estimate_ expected = point self.assertAllClose(result, expected)
def test_estimate_and_belongs_so(self): point = self.so.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so) estimator.fit(point) barexp = estimator.estimate_ result = self.so.belongs(barexp) expected = True self.assertAllClose(result, expected) point = self.so_vec.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so_vec) estimator.fit(point) barexp = estimator.estimate_ result = self.so_vec.belongs(barexp) expected = True self.assertAllClose(result, expected)
def test_estimate_and_reach_max_iter_se(self): point = self.se_mat.random_point(1) estimator = ExponentialBarycenter(self.se_mat, max_iter=2) points = gs.array([point, point]) estimator.fit(points) result = estimator.estimate_ expected = point self.assertAllClose(result, expected) point = self.so_vec.random_uniform(1) estimator = ExponentialBarycenter(self.so_vec, max_iter=2) points = gs.array([point, point]) estimator.fit(points) result = estimator.estimate_ expected = point self.assertAllClose(result, expected)
def test_estimate_weights(self): point = self.so.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so, verbose=True) weights = gs.arange(self.n_samples) estimator.fit(point, weights=weights) barexp = estimator.estimate_ result = self.so.belongs(barexp) expected = True self.assertAllClose(result, expected) point = self.so_vec.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so_vec) estimator.fit(point, weights=weights) barexp = estimator.estimate_ result = self.so_vec.belongs(barexp) expected = True self.assertAllClose(result, expected)
def test_estimate_so_matrix(self): points = self.so.random_uniform(2) mean_vec = ExponentialBarycenter(group=self.so) mean_vec.fit(points) logs = self.so.log(points, mean_vec.estimate_) result = gs.sum(logs, axis=0) expected = gs.zeros_like(points[0]) self.assertAllClose(result, expected)
def test_fit_matrix_se(self): se_mat = SpecialEuclidean(n=3, default_point_type='matrix') X = se_mat.random_uniform(self.n_samples) estimator = ExponentialBarycenter(se_mat) estimator.fit(X) mean = estimator.estimate_ tpca = TangentPCA(metric=se_mat, point_type='matrix') tangent_projected_data = tpca.fit_transform(X, base_point=mean) result = tpca.inverse_transform(tangent_projected_data) expected = X self.assertAllClose(result, expected)
def test_linear_mean(self): euclidean = Euclidean(3) point = euclidean.random_point(self.n_samples) estimator = ExponentialBarycenter(euclidean) estimator.fit(point) result = estimator.estimate_ expected = gs.mean(point, axis=0) self.assertAllClose(result, expected)
def test_coincides_with_frechet_so(self): gs.random.seed(0) point = self.so.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so, max_iter=40, epsilon=1e-10) estimator.fit(point) result = estimator.estimate_ frechet_estimator = FrechetMean(self.so.bi_invariant_metric, max_iter=40, epsilon=1e-10) frechet_estimator.fit(point) expected = frechet_estimator.estimate_ self.assertAllClose(result, expected)
def test_coincides_with_frechet_so(self): point = self.so.random_uniform(self.n_samples) estimator = ExponentialBarycenter(self.so, max_iter=32, epsilon=1e-12) estimator.fit(point) result = estimator.estimate_ print(self.so.default_point_type) so_vector = SpecialOrthogonal(3, default_point_type='vector') frechet_estimator = FrechetMean(so_vector.bi_invariant_metric, max_iter=32, epsilon=1e-10, point_type='vector') vector_point = so_vector.rotation_vector_from_matrix(point) frechet_estimator.fit(vector_point) mean = frechet_estimator.estimate_ expected = so_vector.matrix_from_rotation_vector(mean) result = estimator.estimate_ self.assertAllClose(result, expected)
def __init__(self, geometry, **kwargs): if isinstance(geometry, LieGroup): self._used_geometry = geometry self.estimator = ExponentialBarycenter(group=self._used_geometry, **kwargs) else: if hasattr(geometry, 'metric'): self._used_geometry = geometry.metric elif isinstance(geometry, RiemannianMetric): self._used_geometry = geometry else: raise ValueError('The input geometry must be either a ' 'Manifold equipped with a ' 'RiemannianMetric, or a RiemannianMetric or a' ' LieGroup') self.estimator = FrechetMean(metric=self._used_geometry, **kwargs) self.point_type = geometry.default_point_type self.geometry = geometry