コード例 #1
0
    def test_group_log_and_exp(self):
        point_1 = 5 * gs.eye(4)
        group_log_1 = spd_matrices_space.group_log(point_1)
        result_1 = spd_matrices_space.group_exp(group_log_1)
        expected_1 = point_1

        self.assertTrue(gs.allclose(result_1, expected_1))
コード例 #2
0
    def test_group_log_and_exp_vectorization(self):
        n_samples = self.n_samples
        point = self.space.random_uniform(n_samples)
        group_log = spd_matrices_space.group_log(point)
        result = spd_matrices_space.group_exp(group_log)
        expected = point

        self.assertTrue(gs.allclose(result, expected))
コード例 #3
0
def log_euclidean(hat_l1, hat_l2):
    return np.linalg.norm(
        spd_space.group_log(hat_l1).squeeze(0) -
        spd_space.group_log(hat_l2).squeeze(0), 'fro')
コード例 #4
0
def riemannian(inv_l1, hat_l2):
    return np.linalg.norm(
        inv_l1.dot(spd_space.group_log(hat_l2).squeeze(0).dot(inv_l1)), 'fro')
コード例 #5
0
def frobenius(hat_l1, hat_l2):
    return np.linalg.norm(
        spd_space.group_log(hat_l1).squeeze(0) -
        spd_space.group_log(hat_l2).squeeze(0), 'fro')