def create_temporal_layer(tile): layer = [(TemporalProjectedExtent(e_1, now, proj4=crs), tile), (TemporalProjectedExtent(e_2, now, proj4=crs), tile), (TemporalProjectedExtent(e_3, now, proj4=crs), tile), (TemporalProjectedExtent(e_4, now, proj4=crs), tile)] return layer
def test_temporal_projected_extent(self): pes = [ TemporalProjectedExtent(extent=self.extents[0], epsg=self.crs, instant=self.time), TemporalProjectedExtent(extent=self.extents[1], epsg=self.crs, instant=self.time), TemporalProjectedExtent(extent=self.extents[2], epsg=self.crs, instant=self.time), TemporalProjectedExtent(extent=self.extents[3], epsg=self.crs, instant=self.time) ] pe_layer = [(pes[0], self.tile), (pes[1], self.tile), (pes[2], self.tile), (pes[3], self.tile)] rdd = self.pysc.parallelize(pe_layer) layer = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd) actual = layer.collect_keys() for x in actual: self.assertTrue(x in pes)
class TemporalProjectedExtentSchemaTest(BaseTestClass): extents = [ Extent(0.0, 0.0, 1.0, 1.0), Extent(1.0, 2.0, 3.0, 4.0), Extent(5.0, 6.0, 7.0, 8.0), ] time = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') expected_tpextents = [ TemporalProjectedExtent(epsg=2004, extent=extents[0], instant=time)._asdict(), TemporalProjectedExtent(epsg=2004, extent=extents[1], instant=time)._asdict(), TemporalProjectedExtent(epsg=2004, extent=extents[2], instant=time)._asdict() ] sc = BaseTestClass.pysc._jsc.sc() ew = BaseTestClass.pysc._jvm.geopyspark.geotrellis.tests.schemas.TemporalProjectedExtentWrapper java_rdd = ew.testOut(sc) ser = ProtoBufSerializer(temporal_projected_extent_decoder, temporal_projected_extent_encoder) rdd = RDD(java_rdd, BaseTestClass.pysc, AutoBatchedSerializer(ser)) collected = [tpex._asdict() for tpex in rdd.collect()] @pytest.fixture(scope='class', autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() def result_checker(self, actual_tpe, expected_tpe): for actual, expected in zip(actual_tpe, expected_tpe): self.assertDictEqual(actual, expected) def test_encoded_tpextents(self): actual_encoded = [ temporal_projected_extent_encoder(x) for x in self.rdd.collect() ] for x in range(0, len(self.expected_tpextents)): self.expected_tpextents[x]['extent'] = Extent( **self.expected_tpextents[x]['extent']) expected_encoded = [ to_pb_temporal_projected_extent(TemporalProjectedExtent(**ex)).SerializeToString() \ for ex in self.expected_tpextents ] for actual, expected in zip(actual_encoded, expected_encoded): self.assertEqual(actual, expected) def test_decoded_tpextents(self): self.result_checker(self.collected, self.expected_tpextents)
class UnionTemporalTest(BaseTestClass): time_1 = datetime.datetime.strptime("1993-09-19T07:01:00Z", '%Y-%m-%dT%H:%M:%SZ') time_2 = datetime.datetime.strptime("2017-09-19T07:01:00Z", '%Y-%m-%dT%H:%M:%SZ') temp_projected_extent_1 = TemporalProjectedExtent(extent, time_1, epsg_code) temp_projected_extent_2 = TemporalProjectedExtent(extent, time_2, epsg_code) arr = np.zeros((1, 16, 16)) tile = Tile(arr, 'FLOAT', -500.0) rdd_1 = BaseTestClass.pysc.parallelize([(temp_projected_extent_1, tile)]) rdd_2 = BaseTestClass.pysc.parallelize([(temp_projected_extent_2, tile)]) layer_1 = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd_1) layer_2 = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd_2) tiled_layer_1 = layer_1.tile_to_layout(GlobalLayout()) tiled_layer_2 = layer_2.tile_to_layout(GlobalLayout()) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() def test_union_of_raster_layers(self): result = union(self.layer_1, self.layer_2) self.assertTrue(result.srdd.rdd().count(), 2) def test_union_of_tiled_raster_layers(self): result = union(self.tiled_layer_1, self.tiled_layer_2) bounds_1 = self.tiled_layer_1.layer_metadata.bounds bounds_2 = self.tiled_layer_2.layer_metadata.bounds min_col = min(bounds_1.minKey.col, bounds_2.minKey.col) min_row = min(bounds_1.minKey.row, bounds_2.minKey.row) min_instant = min(bounds_1.minKey.instant, bounds_2.minKey.instant) max_col = max(bounds_1.maxKey.col, bounds_2.maxKey.col) max_row = max(bounds_1.maxKey.row, bounds_2.maxKey.row) max_instant = max(bounds_1.maxKey.instant, bounds_2.maxKey.instant) min_key = SpaceTimeKey(min_col, min_row, min_instant) max_key = SpaceTimeKey(max_col, max_row, max_instant) self.assertTrue(result.srdd.rdd().count(), 2) self.assertEqual(result.layer_metadata.bounds, Bounds(min_key, max_key))
def from_pb_temporal_projected_extent(pb_temporal_projected_extent): """Creates a ``TemporalProjectedExtent`` from a ``ProtoTemporalProjectedExtent``. Args: pb_temporal_projected_extent (ProtoTemporalProjectedExtent): An instance of ``ProtoTemporalProjectedExtent``. Returns: :class:`~geopyspark.geotrellis.TemporalProjectedExtent` """ instant = datetime.datetime.utcfromtimestamp(pb_temporal_projected_extent.instant / 1000) if pb_temporal_projected_extent.crs.epsg is not 0: return TemporalProjectedExtent(extent=from_pb_extent(pb_temporal_projected_extent.extent), epsg=pb_temporal_projected_extent.crs.epsg, instant=instant) else: return TemporalProjectedExtent(extent=from_pb_extent(pb_temporal_projected_extent.extent), proj4=pb_temporal_projected_extent.crs.proj4, instant=instant)
def test_temporal_projected_extent(self): pes = [ TemporalProjectedExtent(extent=self.extents[0], epsg=self.crs, instant=self.time), TemporalProjectedExtent(extent=self.extents[1], epsg=self.crs, instant=self.time), ] pe_layer = [(pes[0], self.tile_1), (pes[1], self.tile_1), (pes[0], self.tile_2), (pes[1], self.tile_2)] rdd = self.pysc.parallelize(pe_layer) layer = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd) actual = layer.merge() self.assertEqual(actual.srdd.rdd().count(), 2) for k, v in actual.to_numpy_rdd().collect(): self.assertTrue((v.cells == self.arr_2).all())
def test_encoded_tpextents(self): actual_encoded = [ temporal_projected_extent_encoder(x) for x in self.rdd.collect() ] for x in range(0, len(self.expected_tpextents)): self.expected_tpextents[x]['extent'] = Extent( **self.expected_tpextents[x]['extent']) expected_encoded = [ to_pb_temporal_projected_extent(TemporalProjectedExtent(**ex)).SerializeToString() \ for ex in self.expected_tpextents ] for actual, expected in zip(actual_encoded, expected_encoded): self.assertEqual(actual, expected)
class TestMultipleDates(TestCase): band1 = np.array([[-1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]) band2 = np.array([[2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, -1.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0]]) tile = Tile.from_numpy_array(band1, no_data_value=-1.0) tile2 = Tile.from_numpy_array(band2, no_data_value=-1.0) time_1 = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_2 = datetime.datetime.strptime("2017-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_3 = datetime.datetime.strptime("2017-10-17T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') layer = [(SpaceTimeKey(0, 0, time_1), tile), (SpaceTimeKey(1, 0, time_1), tile2), (SpaceTimeKey(0, 1, time_1), tile), (SpaceTimeKey(1, 1, time_1), tile), (SpaceTimeKey(0, 0, time_2), tile2), (SpaceTimeKey(1, 0, time_2), tile2), (SpaceTimeKey(0, 1, time_2), tile2), (SpaceTimeKey(1, 1, time_2), tile2), (SpaceTimeKey(0, 0, time_3), tile), (SpaceTimeKey(1, 0, time_3), tile2), (SpaceTimeKey(0, 1, time_3), tile), (SpaceTimeKey(1, 1, time_3), tile)] rdd = SparkContext.getOrCreate().parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = { 'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(time_1) }, 'maxKey': { 'col': 1, 'row': 1, 'instant': _convert_to_unix_time(time_3) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': { 'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2 } } } tiled_raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) layer2 = [(TemporalProjectedExtent(Extent(0, 0, 1, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_3), tile)] rdd2 = SparkContext.getOrCreate().parallelize(layer2) raster_rdd = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd2) points = [ Point(1.0, -3.0), Point(0.5, 0.5), Point(20.0, 3.0), Point(1.0, -2.0), Point(-10.0, 15.0) ] def setUp(self): # TODO: make this reusable (or a pytest fixture) self.temp_folder = Path.cwd() / 'tmp' if not self.temp_folder.exists(): self.temp_folder.mkdir() assert self.temp_folder.is_dir() def test_reproject_spatial(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) resampled = imagecollection.resample_spatial(resolution=0, projection="EPSG:3857", method="max") metadata = resampled.pyramid.levels[0].layer_metadata print(metadata) self.assertTrue("proj=merc" in metadata.crs) path = str(self.temp_folder / "reprojected.tiff") resampled.reduce('max', 'temporal').download(path, format="GTIFF", parameters={'tiled': True}) import rasterio with rasterio.open(path) as ds: print(ds.profile) def test_reduce(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.reduce( "max", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(2.0, stitched.cells[0][0][1]) stitched = imagecollection.reduce( "min", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(1.0, stitched.cells[0][0][1]) stitched = imagecollection.reduce( "sum", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(4.0, stitched.cells[0][0][1]) stitched = imagecollection.reduce( "mean", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertAlmostEqual(1.3333333, stitched.cells[0][0][1]) stitched = imagecollection.reduce( "variance", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(0.0, stitched.cells[0][0][0]) self.assertAlmostEqual(0.2222222, stitched.cells[0][0][1]) stitched = imagecollection.reduce( "sd", "temporal").pyramid.levels[0].stitch() print(stitched) self.assertEqual(0.0, stitched.cells[0][0][0]) self.assertAlmostEqual(0.4714045, stitched.cells[0][0][1]) def test_reduce_all_data(self): input = Pyramid({ 0: self._single_pixel_layer({ datetime.datetime.strptime("2016-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 1.0, datetime.datetime.strptime("2017-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 5.0 }) }) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.reduce( "min", "temporal").pyramid.levels[0].stitch() self.assertEqual(1.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "max", "temporal").pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "sum", "temporal").pyramid.levels[0].stitch() self.assertEqual(6.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "mean", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(3.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "variance", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(4.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "sd", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(2.0, stitched.cells[0][0][0], delta=0.001) def test_reduce_some_nodata(self): no_data = -1.0 input = Pyramid({ 0: self._single_pixel_layer( { datetime.datetime.strptime("2016-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): no_data, datetime.datetime.strptime("2017-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 5.0 }, no_data) }) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.reduce( "min", "temporal").pyramid.levels[0].stitch() #print(stitched) self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "max", "temporal").pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "sum", "temporal").pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "mean", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(5.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "variance", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(0.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "sd", "temporal").pyramid.levels[0].stitch() self.assertAlmostEqual(0.0, stitched.cells[0][0][0], delta=0.001) def test_reduce_tiles(self): print("======") tile1 = self._single_pixel_tile(1) tile2 = self._single_pixel_tile(5) cube = np.array([tile1.cells, tile2.cells]) # "MIN", "MAX", "SUM", "MEAN", "VARIANCE" std = np.std(cube, axis=0) var = np.var(cube, axis=0) print(var) @staticmethod def _single_pixel_tile(value, no_data=-1.0): cells = np.array([[value]]) return Tile.from_numpy_array(cells, no_data) def _single_pixel_layer(self, grid_value_by_datetime, no_data=-1.0): from collections import OrderedDict sorted_by_datetime = OrderedDict(sorted( grid_value_by_datetime.items())) def elem(timestamp, value): tile = self._single_pixel_tile(value, no_data) return [(SpaceTimeKey(0, 0, timestamp), tile)] layer = [ elem(timestamp, value) for timestamp, value in sorted_by_datetime.items() ] rdd = SparkContext.getOrCreate().parallelize(layer) datetimes = list(sorted_by_datetime.keys()) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 1.0, 'ymax': 1.0} layout = { 'layoutCols': 1, 'layoutRows': 1, 'tileCols': 1, 'tileRows': 1 } metadata = { 'cellType': 'float32ud%f' % no_data, 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(datetimes[0]) }, 'maxKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(datetimes[-1]) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': layout } } return TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) def test_reduce_nontemporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) with self.assertRaises(AttributeError) as context: imagecollection.reduce("max", "spectral").pyramid.levels[0].stitch() print(context.exception) def test_aggregate_temporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.aggregate_temporal( ["2017-01-01", "2018-01-01"], ["2017-01-03"], "max").pyramid.levels[0].to_spatial_layer().stitch() print(stitched) def test_max_aggregator(self): tiles = [self.tile, self.tile2] composite = max_composite(tiles) self.assertEqual(2.0, composite.cells[0][0]) def test_aggregate_max_time(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.reduce( 'max', 'temporal').pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) def test_min_time(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) min_time = imagecollection.reduce('min', 'temporal') max_time = imagecollection.reduce('max', 'temporal') stitched = min_time.pyramid.levels[0].stitch() print(stitched) self.assertEquals(2.0, stitched.cells[0][0][0]) for p in self.points[1:3]: result = min_time.timeseries(p.x, p.y, srs="EPSG:3857") print(result) print(imagecollection.timeseries(p.x, p.y, srs="EPSG:3857")) max_result = max_time.timeseries(p.x, p.y, srs="EPSG:3857") self.assertEqual(1.0, result['NoDate']) self.assertEqual(2.0, max_result['NoDate']) def test_apply_spatiotemporal(self): import openeo_udf.functions input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry(), { "bands": [{ "band_id": "2", "name": "blue", "wavelength_nm": 496.6, "res_m": 10, "scale": 0.0001, "offset": 0, "type": "int16", "unit": "1" }] }) import os, openeo_udf dir = os.path.dirname(openeo_udf.functions.__file__) file_name = os.path.join(dir, "datacube_reduce_time_sum.py") with open(file_name, "r") as f: udf_code = f.read() result = imagecollection.apply_tiles_spatiotemporal(udf_code) stitched = result.pyramid.levels[0].to_spatial_layer().stitch() print(stitched) self.assertEqual(2, stitched.cells[0][0][0]) self.assertEqual(6, stitched.cells[0][0][5]) self.assertEqual(4, stitched.cells[0][5][6]) def test_apply_dimension_spatiotemporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry(), { "bands": [{ "band_id": "2", "name": "blue", "wavelength_nm": 496.6, "res_m": 10, "scale": 0.0001, "offset": 0, "type": "int16", "unit": "1" }] }) udf_code = """ def rct_savitzky_golay(udf_data:UdfData): from scipy.signal import savgol_filter print(udf_data.get_datacube_list()) return udf_data """ result = imagecollection.apply_tiles_spatiotemporal(udf_code) local_tiles = result.pyramid.levels[0].to_numpy_rdd().collect() print(local_tiles) self.assertEquals(len(TestMultipleDates.layer), len(local_tiles)) ref_dict = { e[0]: e[1] for e in imagecollection.pyramid.levels[0].convert_data_type( CellType.FLOAT64).to_numpy_rdd().collect() } result_dict = {e[0]: e[1] for e in local_tiles} for k, v in ref_dict.items(): tile = result_dict[k] assert_array_almost_equal(np.squeeze(v.cells), np.squeeze(tile.cells), decimal=2) def test_mask_raster(self): input = Pyramid({0: self.tiled_raster_rdd}) def createMask(tile): tile.cells[0][0][0] = 0.0 return tile mask_layer = self.tiled_raster_rdd.map_tiles(createMask) mask = Pyramid({0: mask_layer}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.mask( rastermask=GeotrellisTimeSeriesImageCollection( mask, InMemoryServiceRegistry()), replacement=10.0).reduce('max', 'temporal').pyramid.levels[0].stitch() print(stitched) self.assertEquals(2.0, stitched.cells[0][0][0]) self.assertEquals(10.0, stitched.cells[0][0][1]) def test_apply_kernel(self): kernel = np.array([[0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0]]) input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) stitched = imagecollection.apply_kernel(kernel, 2.0).reduce( 'max', 'temporal').pyramid.levels[0].stitch() self.assertEquals(12.0, stitched.cells[0][0][0]) self.assertEquals(16.0, stitched.cells[0][0][1]) self.assertEquals(20.0, stitched.cells[0][1][1]) def test_resample_spatial(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry()) resampled = imagecollection.resample_spatial(resolution=0.05) path = str(self.temp_folder / "resampled.tiff") resampled.reduce('max', 'temporal').download(path, format="GTIFF", parameters={'tiled': True}) import rasterio with rasterio.open(path) as ds: print(ds.profile) self.assertAlmostEqual(0.05, ds.res[0], 3)
class TestMultipleDates(TestCase): band1 = np.array([[-1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]) band2 = np.array([[2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, -1.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0]]) tile = Tile.from_numpy_array(band1, no_data_value=-1.0) tile2 = Tile.from_numpy_array(band2, no_data_value=-1.0) time_1 = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_2 = datetime.datetime.strptime("2017-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_3 = datetime.datetime.strptime("2017-10-17T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') layer = [(SpaceTimeKey(0, 0, time_1), tile), (SpaceTimeKey(1, 0, time_1), tile2), (SpaceTimeKey(0, 1, time_1), tile), (SpaceTimeKey(1, 1, time_1), tile), (SpaceTimeKey(0, 0, time_2), tile2), (SpaceTimeKey(1, 0, time_2), tile2), (SpaceTimeKey(0, 1, time_2), tile2), (SpaceTimeKey(1, 1, time_2), tile2), (SpaceTimeKey(0, 0, time_3), tile), (SpaceTimeKey(1, 0, time_3), tile2), (SpaceTimeKey(0, 1, time_3), tile), (SpaceTimeKey(1, 1, time_3), tile)] rdd = SparkContext.getOrCreate().parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = { 'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(time_1) }, 'maxKey': { 'col': 1, 'row': 1, 'instant': _convert_to_unix_time(time_3) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': { 'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2 } } } collection_metadata = GeopysparkCubeMetadata( {"cube:dimensions": { "t": { "type": "temporal" }, }}) tiled_raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) layer2 = [(TemporalProjectedExtent(Extent(0, 0, 1, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_3), tile)] rdd2 = SparkContext.getOrCreate().parallelize(layer2) raster_rdd = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd2) points = [ Point(1.0, -3.0), Point(0.5, 0.5), Point(20.0, 3.0), Point(1.0, -2.0), Point(-10.0, 15.0) ] def setUp(self): # TODO: make this reusable (or a pytest fixture) self.temp_folder = Path.cwd() / 'tmp' if not self.temp_folder.exists(): self.temp_folder.mkdir() assert self.temp_folder.is_dir() def test_reproject_spatial(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) ref_path = str(self.temp_folder / "reproj_ref.tiff") imagecollection.reduce('max', dimension="t").save_result(ref_path, format="GTIFF") resampled = imagecollection.resample_spatial(resolution=0, projection="EPSG:3395", method="max") metadata = resampled.pyramid.levels[0].layer_metadata print(metadata) self.assertTrue("proj=merc" in metadata.crs) path = str(self.temp_folder / "reprojected.tiff") res = resampled.reduce('max', dimension="t") res.save_result(path, format="GTIFF") with rasterio.open(ref_path) as ref_ds: with rasterio.open(path) as ds: print(ds.profile) #this reprojection does not change the shape, so we can compare assert ds.read().shape == ref_ds.read().shape assert (ds.crs.to_epsg() == 3395) def test_reduce(self): input = Pyramid({0: self.tiled_raster_rdd}) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) env = EvalEnv() stitched = cube.reduce_dimension(dimension="t", reducer=reducer("max"), env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(2.0, stitched.cells[0][0][1]) stitched = cube.reduce_dimension(dimension="t", reducer=reducer("min"), env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(1.0, stitched.cells[0][0][1]) stitched = cube.reduce_dimension(dimension="t", reducer=reducer("sum"), env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertEqual(4.0, stitched.cells[0][0][1]) stitched = cube.reduce_dimension(dimension="t", reducer=reducer("mean"), env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) self.assertAlmostEqual(1.3333333, stitched.cells[0][0][1]) stitched = cube.reduce_dimension(reducer=reducer("variance"), dimension="t", env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(0.0, stitched.cells[0][0][0]) self.assertAlmostEqual(0.2222222, stitched.cells[0][0][1]) stitched = cube.reduce_dimension(reducer=reducer("sd"), dimension="t", env=env).pyramid.levels[0].stitch() print(stitched) self.assertEqual(0.0, stitched.cells[0][0][0]) self.assertAlmostEqual(0.4714045, stitched.cells[0][0][1]) def test_reduce_all_data(self): input = Pyramid({ 0: self._single_pixel_layer({ datetime.datetime.strptime("2016-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 1.0, datetime.datetime.strptime("2017-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 5.0 }) }) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) env = EvalEnv() stitched = cube.reduce_dimension(reducer=reducer("min"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertEqual(1.0, stitched.cells[0][0][0]) stitched = cube.reduce_dimension(reducer=reducer("max"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = cube.reduce_dimension(reducer=reducer("sum"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertEqual(6.0, stitched.cells[0][0][0]) stitched = cube.reduce_dimension(reducer=reducer("mean"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertAlmostEqual(3.0, stitched.cells[0][0][0], delta=0.001) stitched = cube.reduce_dimension(reducer=reducer("variance"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertAlmostEqual(4.0, stitched.cells[0][0][0], delta=0.001) stitched = cube.reduce_dimension(reducer=reducer("sd"), dimension="t", env=env).pyramid.levels[0].stitch() self.assertAlmostEqual(2.0, stitched.cells[0][0][0], delta=0.001) def test_reduce_some_nodata(self): no_data = -1.0 input = Pyramid({ 0: self._single_pixel_layer( { datetime.datetime.strptime("2016-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): no_data, datetime.datetime.strptime("2017-04-24T04:00:00Z", '%Y-%m-%dT%H:%M:%SZ'): 5.0 }, no_data) }) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) stitched = imagecollection.reduce( "min", dimension="t").pyramid.levels[0].stitch() #print(stitched) self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "max", dimension="t").pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "sum", dimension="t").pyramid.levels[0].stitch() self.assertEqual(5.0, stitched.cells[0][0][0]) stitched = imagecollection.reduce( "mean", dimension="t").pyramid.levels[0].stitch() self.assertAlmostEqual(5.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "variance", dimension="t").pyramid.levels[0].stitch() self.assertAlmostEqual(0.0, stitched.cells[0][0][0], delta=0.001) stitched = imagecollection.reduce( "sd", dimension="t").pyramid.levels[0].stitch() self.assertAlmostEqual(0.0, stitched.cells[0][0][0], delta=0.001) def test_reduce_tiles(self): print("======") tile1 = self._single_pixel_tile(1) tile2 = self._single_pixel_tile(5) cube = np.array([tile1.cells, tile2.cells]) # "MIN", "MAX", "SUM", "MEAN", "VARIANCE" std = np.std(cube, axis=0) var = np.var(cube, axis=0) print(var) @staticmethod def _single_pixel_tile(value, no_data=-1.0): cells = np.array([[value]]) return Tile.from_numpy_array(cells, no_data) def _single_pixel_layer(self, grid_value_by_datetime, no_data=-1.0): from collections import OrderedDict sorted_by_datetime = OrderedDict(sorted( grid_value_by_datetime.items())) def elem(timestamp, value): tile = self._single_pixel_tile(value, no_data) return [(SpaceTimeKey(0, 0, timestamp), tile)] layer = [ elem(timestamp, value) for timestamp, value in sorted_by_datetime.items() ] rdd = SparkContext.getOrCreate().parallelize(layer) datetimes = list(sorted_by_datetime.keys()) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 1.0, 'ymax': 1.0} layout = { 'layoutCols': 1, 'layoutRows': 1, 'tileCols': 1, 'tileRows': 1 } metadata = { 'cellType': 'float32ud%f' % no_data, 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(datetimes[0]) }, 'maxKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(datetimes[-1]) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': layout } } return TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) def test_reduce_nontemporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) with self.assertRaises(FeatureUnsupportedException) as context: imagecollection.reduce( "max", dimension="gender").pyramid.levels[0].stitch() print(context.exception) def test_aggregate_temporal(self): """ Tests deprecated process spec! To be phased out. @return: """ interval_list = ["2017-01-01", "2018-01-01"] self._test_aggregate_temporal(interval_list) def _median_reducer(self): from openeo.processes import median builder = median({"from_argument": "data"}) return builder.flat_graph() def test_aggregate_temporal_median(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) stitched = (imagecollection.aggregate_temporal( ["2015-01-01", "2018-01-01"], ["2017-01-03"], self._median_reducer(), dimension="t").pyramid.levels[0].to_spatial_layer().stitch()) print(stitched) expected_median = np.median( [self.tile.cells, self.tile2.cells, self.tile.cells], axis=0) #TODO nodata handling?? assert_array_almost_equal(stitched.cells[0, 1:2, 1:2], expected_median[1:2, 1:2]) def _test_aggregate_temporal(self, interval_list): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) stitched = (imagecollection.aggregate_temporal( interval_list, ["2017-01-03"], "min", dimension="t").pyramid.levels[0].to_spatial_layer().stitch()) print(stitched) expected_max = np.min([self.tile2.cells, self.tile.cells], axis=0) assert_array_almost_equal(stitched.cells[0, 0:5, 0:5], expected_max) def test_aggregate_temporal_100(self): self._test_aggregate_temporal([["2017-01-01", "2018-01-01"]]) def test_max_aggregator(self): tiles = [self.tile, self.tile2] composite = max_composite(tiles) self.assertEqual(2.0, composite.cells[0][0]) def test_aggregate_max_time(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) layer = imagecollection.reduce('max', dimension='t').pyramid.levels[0] stitched = layer.stitch() assert CellType.FLOAT32.value == layer.layer_metadata.cell_type print(stitched) self.assertEqual(2.0, stitched.cells[0][0][0]) def test_min_time(self): input = Pyramid({0: self.tiled_raster_rdd}) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) env = EvalEnv() min_time = cube.reduce_dimension(reducer=reducer('min'), dimension='t', env=env) max_time = cube.reduce_dimension(reducer=reducer('max'), dimension='t', env=env) stitched = min_time.pyramid.levels[0].stitch() print(stitched) self.assertEquals(2.0, stitched.cells[0][0][0]) for p in self.points[1:3]: result = min_time.timeseries(p.x, p.y, srs="EPSG:3857") print(result) print(cube.timeseries(p.x, p.y, srs="EPSG:3857")) max_result = max_time.timeseries(p.x, p.y, srs="EPSG:3857") self.assertEqual(1.0, result['NoDate']) self.assertEqual(2.0, max_result['NoDate']) def test_apply_dimension_spatiotemporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube( pyramid=input, metadata=GeopysparkCubeMetadata({ "cube:dimensions": { # TODO: also specify other dimensions? "bands": { "type": "bands", "values": ["2"] } }, "summaries": { "eo:bands": [{ "name": "2", "common_name": "blue", "wavelength_nm": 496.6, "res_m": 10, "scale": 0.0001, "offset": 0, "type": "int16", "unit": "1" }] } })) udf_code = """ def rct_savitzky_golay(udf_data:UdfData): from scipy.signal import savgol_filter print(udf_data.get_datacube_list()) return udf_data """ result = imagecollection.apply_tiles_spatiotemporal(udf_code) local_tiles = result.pyramid.levels[0].to_numpy_rdd().collect() print(local_tiles) self.assertEquals(len(TestMultipleDates.layer), len(local_tiles)) ref_dict = { e[0]: e[1] for e in imagecollection.pyramid.levels[0].convert_data_type( CellType.FLOAT64).to_numpy_rdd().collect() } result_dict = {e[0]: e[1] for e in local_tiles} for k, v in ref_dict.items(): tile = result_dict[k] assert_array_almost_equal(np.squeeze(v.cells), np.squeeze(tile.cells), decimal=2) def test_mask_raster_replacement_default_none(self): def createMask(tile): tile.cells[0][0][0] = 0.0 return tile input = Pyramid({0: self.tiled_raster_rdd}) mask_layer = self.tiled_raster_rdd.map_tiles(createMask) mask = Pyramid({0: mask_layer}) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) mask_cube = GeopysparkDataCube(pyramid=mask) stitched = cube.mask(mask=mask_cube).reduce( 'max', dimension="t").pyramid.levels[0].stitch() print(stitched) assert stitched.cells[0][0][0] == 2.0 assert np.isnan(stitched.cells[0][0][1]) def test_mask_raster_replacement_float(self): def createMask(tile): tile.cells[0][0][0] = 0.0 return tile input = Pyramid({0: self.tiled_raster_rdd}) mask_layer = self.tiled_raster_rdd.map_tiles(createMask) mask = Pyramid({0: mask_layer}) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) mask_cube = GeopysparkDataCube(pyramid=mask) stitched = cube.mask(mask=mask_cube, replacement=10.0).reduce( 'max', dimension="t").pyramid.levels[0].stitch() print(stitched) assert stitched.cells[0][0][0] == 2.0 assert stitched.cells[0][0][1] == 10.0 def test_mask_raster_replacement_int(self): def createMask(tile): tile.cells[0][0][0] = 0.0 return tile input = Pyramid({0: self.tiled_raster_rdd}) mask_layer = self.tiled_raster_rdd.map_tiles(createMask) mask = Pyramid({0: mask_layer}) cube = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) mask_cube = GeopysparkDataCube(pyramid=mask) stitched = cube.mask(mask=mask_cube, replacement=10).reduce( 'max', dimension="t").pyramid.levels[0].stitch() print(stitched) assert stitched.cells[0][0][0] == 2.0 assert stitched.cells[0][0][1] == 10.0 def test_apply_kernel_float(self): kernel = np.array([[0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0]]) input = Pyramid({0: self.tiled_raster_rdd}) img = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) stitched = img.apply_kernel(kernel, 2.0).reduce( 'max', dimension="t").pyramid.levels[0].stitch() assert stitched.cells[0][0][0] == 12.0 assert stitched.cells[0][0][1] == 16.0 assert stitched.cells[0][1][1] == 20.0 def test_apply_kernel_int(self): kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) input = Pyramid({0: self.tiled_raster_rdd}) img = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) stitched = img.apply_kernel(kernel).reduce( 'max', dimension="t").pyramid.levels[0].stitch() assert stitched.cells[0][0][0] == 6.0 assert stitched.cells[0][0][1] == 8.0 assert stitched.cells[0][1][1] == 10.0 def test_resample_spatial(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeopysparkDataCube(pyramid=input, metadata=self.collection_metadata) resampled = imagecollection.resample_spatial(resolution=0.05) path = str(self.temp_folder / "resampled.tiff") res = resampled.reduce('max', dimension="t") res.save_result(path, format="GTIFF") import rasterio with rasterio.open(path) as ds: print(ds.profile) self.assertAlmostEqual(0.05, ds.res[0], 3) def test_rename_dimension(self): imagecollection = GeopysparkDataCube(pyramid=Pyramid( {0: self.tiled_raster_rdd}), metadata=self.collection_metadata) dim_renamed = imagecollection.rename_dimension('t', 'myNewTimeDim') dim_renamed.metadata.assert_valid_dimension('myNewTimeDim')
class ToSpatialLayerTest(BaseTestClass): band_1 = np.array([ [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]) band_2 = np.array([ [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0]]) bands = np.array([band_1, band_2]) time = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') layer = [(SpaceTimeKey(0, 0, time), Tile(bands, 'FLOAT', -1.0)), (SpaceTimeKey(1, 0, time), Tile(bands, 'FLOAT', -1.0,)), (SpaceTimeKey(0, 1, time), Tile(bands, 'FLOAT', -1.0,)), (SpaceTimeKey(1, 1, time), Tile(bands, 'FLOAT', -1.0,))] rdd = BaseTestClass.pysc.parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = {'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': {'col': 0, 'row': 0, 'instant': 1}, 'maxKey': {'col': 1, 'row': 1, 'instant': 1}}, 'layoutDefinition': { 'extent': extent, 'tileLayout': {'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2}}} tiled_raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) layer2 = [(TemporalProjectedExtent(Extent(0, 0, 1, 1), epsg=3857, instant=time), Tile(bands, 'FLOAT', -1.0)), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time), Tile(bands, 'FLOAT', -1.0)), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time), Tile(bands, 'FLOAT', -1.0)), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time), Tile(bands, 'FLOAT', -1.0))] rdd2 = BaseTestClass.pysc.parallelize(layer2) raster_rdd = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd2) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() # This test should be moved to a more appropriate file once more spatial-temporal # tests are made. def test_spatial_metadata(self): metadata = self.raster_rdd.collect_metadata() min_key = metadata.bounds.minKey max_key = metadata.bounds.maxKey self.assertEqual(min_key.instant, self.time) self.assertEqual(max_key.instant, self.time) def test_to_spatial_raster_layer(self): actual = [k for k, v in self.raster_rdd.to_spatial_layer().to_numpy_rdd().collect()] expected = [ ProjectedExtent(Extent(0, 0, 1, 1), 3857), ProjectedExtent(Extent(1, 0, 2, 1), 3857), ProjectedExtent(Extent(0, 1, 1, 2), 3857), ProjectedExtent(Extent(1, 1, 2, 2), 3857) ] for a, e in zip(actual, expected): self.assertEqual(a, e) def test_to_spatial_tiled_layer(self): actual = [k for k, v in self.tiled_raster_rdd.to_spatial_layer().to_numpy_rdd().collect()] expected = [ SpatialKey(0, 0), SpatialKey(1, 0), SpatialKey(0, 1), SpatialKey(1, 1) ] for a, e in zip(actual, expected): self.assertEqual(a, e)
class ToSpatialLayerTest(BaseTestClass): band_1 = np.array([[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]) band_2 = np.array([[2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0]]) tile_1 = Tile.from_numpy_array(np.array([band_1])) tile_2 = Tile.from_numpy_array(np.array([band_2])) time_1 = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_2 = datetime.datetime.strptime("2017-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') layer = [(SpaceTimeKey(0, 0, time_1), tile_1), (SpaceTimeKey(1, 0, time_1), tile_1), (SpaceTimeKey(0, 1, time_1), tile_1), (SpaceTimeKey(1, 1, time_1), tile_1), (SpaceTimeKey(0, 0, time_2), tile_2), (SpaceTimeKey(1, 0, time_2), tile_2), (SpaceTimeKey(0, 1, time_2), tile_2), (SpaceTimeKey(1, 1, time_2), tile_2)] rdd = BaseTestClass.pysc.parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = { 'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(time_1) }, 'maxKey': { 'col': 1, 'row': 1, 'instant': _convert_to_unix_time(time_2) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': { 'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2 } } } tiled_raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) layer2 = [(TemporalProjectedExtent(Extent(0, 0, 1, 1), epsg=3857, instant=time_1), tile_1), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_1), tile_1), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_1), tile_1), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_1), tile_1), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile_2), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile_2), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_2), tile_2), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_2), tile_2)] rdd2 = BaseTestClass.pysc.parallelize(layer2) raster_rdd = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd2) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() # This test should be moved to a more appropriate file once more spatial-temporal # tests are made. def test_spatial_metadata(self): metadata = self.raster_rdd.collect_metadata() min_key = metadata.bounds.minKey max_key = metadata.bounds.maxKey self.assertEqual(min_key.instant, self.time_1) self.assertEqual(max_key.instant, self.time_2) def test_to_spatial_raster_layer(self): actual = self.raster_rdd.to_spatial_layer().to_numpy_rdd().keys( ).collect() expected = [ ProjectedExtent(Extent(0, 0, 1, 1), 3857), ProjectedExtent(Extent(1, 0, 2, 1), 3857), ProjectedExtent(Extent(0, 1, 1, 2), 3857), ProjectedExtent(Extent(1, 1, 2, 2), 3857) ] for x in actual: self.assertTrue(x in expected) def test_to_spatial_target_time_raster_layer(self): converted = self.raster_rdd.to_spatial_layer(target_time=self.time_1) keys = converted.to_numpy_rdd().keys().collect() values = converted.to_numpy_rdd().values().collect() expected = [ ProjectedExtent(Extent(0, 0, 1, 1), 3857), ProjectedExtent(Extent(1, 0, 2, 1), 3857), ProjectedExtent(Extent(0, 1, 1, 2), 3857), ProjectedExtent(Extent(1, 1, 2, 2), 3857) ] for x in keys: self.assertTrue(x in expected) for x in values: self.assertEqual(x.cells.shape, self.tile_1.cells.shape) self.assertTrue((x.cells == 1.0).all()) def test_to_spatial_tiled_layer(self): actual = self.tiled_raster_rdd.to_spatial_layer().to_numpy_rdd().keys( ).collect() expected = [ SpatialKey(0, 0), SpatialKey(1, 0), SpatialKey(0, 1), SpatialKey(1, 1) ] for x in actual: self.assertTrue(x in expected) def test_to_spatial_target_time_tiled_layer(self): converted = self.tiled_raster_rdd.to_spatial_layer( target_time=self.time_2) keys = converted.to_numpy_rdd().keys().collect() values = converted.to_numpy_rdd().values().collect() expected = [ SpatialKey(0, 0), SpatialKey(1, 0), SpatialKey(0, 1), SpatialKey(1, 1) ] for x in keys: self.assertTrue(x in expected) for x in values: self.assertEqual(x.cells.shape, self.tile_2.cells.shape) self.assertTrue((x.cells == 2.0).all())
class FilterByTimesTest(BaseTestClass): band = np.array([[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]) tile = Tile.from_numpy_array(band) time_1 = datetime.datetime.strptime("2016-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_2 = datetime.datetime.strptime("2017-08-24T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') time_3 = datetime.datetime.strptime("2017-10-17T09:00:00Z", '%Y-%m-%dT%H:%M:%SZ') layer = [(SpaceTimeKey(0, 0, time_1), tile), (SpaceTimeKey(1, 0, time_1), tile), (SpaceTimeKey(0, 1, time_1), tile), (SpaceTimeKey(1, 1, time_1), tile), (SpaceTimeKey(0, 0, time_2), tile), (SpaceTimeKey(1, 0, time_2), tile), (SpaceTimeKey(0, 1, time_2), tile), (SpaceTimeKey(1, 1, time_2), tile), (SpaceTimeKey(0, 0, time_3), tile), (SpaceTimeKey(1, 0, time_3), tile), (SpaceTimeKey(0, 1, time_3), tile), (SpaceTimeKey(1, 1, time_3), tile)] rdd = BaseTestClass.pysc.parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = { 'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': { 'col': 0, 'row': 0, 'instant': _convert_to_unix_time(time_1) }, 'maxKey': { 'col': 1, 'row': 1, 'instant': _convert_to_unix_time(time_3) } }, 'layoutDefinition': { 'extent': extent, 'tileLayout': { 'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2 } } } tiled_raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd, metadata) layer2 = [(TemporalProjectedExtent(Extent(0, 0, 1, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_1), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_2), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 0, 2, 1), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(0, 1, 1, 2), epsg=3857, instant=time_3), tile), (TemporalProjectedExtent(Extent(1, 1, 2, 2), epsg=3857, instant=time_3), tile)] rdd2 = BaseTestClass.pysc.parallelize(layer2) raster_rdd = RasterLayer.from_numpy_rdd(LayerType.SPACETIME, rdd2) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() def test_filter_temporal_projected_extent_single_time(self): result = self.raster_rdd.filter_by_times([self.time_1]) expected = self.layer2[:4] actual = result.to_numpy_rdd().collect() self.assertEqual(len(expected), len(actual)) for x, y in zip(expected, actual): self.assertEqual(x[0], y[0]) self.assertTrue((x[1].cells == y[1].cells).all()) def test_filter_temporal_projected_extent_multi_intervals(self): result = self.raster_rdd.filter_by_times([self.time_2, self.time_3]) expected = self.layer2[4:] actual = result.to_numpy_rdd().collect() self.assertEqual(len(expected), len(actual)) for x, y in zip(expected, actual): self.assertEqual(x[0], y[0]) self.assertTrue((x[1].cells == y[1].cells).all()) def test_filter_spacetime_key_single_time(self): result = self.tiled_raster_rdd.filter_by_times([self.time_3]) expected = self.layer[8:] actual = result.to_numpy_rdd().collect() self.assertEqual(len(expected), len(actual)) for x, y in zip(expected, actual): self.assertEqual(x[0], y[0]) self.assertTrue((x[1].cells == y[1].cells).all()) def test_filter_spacetime_key_multi_intervals(self): result = self.tiled_raster_rdd.filter_by_times( [self.time_1, self.time_2]) expected = self.layer[:8] actual = result.to_numpy_rdd().collect() self.assertEqual(len(expected), len(actual)) for x, y in zip(expected, actual): self.assertEqual(x[0], y[0]) self.assertTrue((x[1].cells == y[1].cells).all())
def temporal_projected_extent_decoder(schema_dict): return TemporalProjectedExtent(Extent(**schema_dict['extent']), schema_dict['instant'], schema_dict.get('epsg'), schema_dict.get('proj4'))