def get_trajectory(self, start_time, end_time): if not type(start_time) == datetime.datetime: raise ValueError('Given times must be of type datetime.datetime') if not type(end_time) == datetime.datetime: raise ValueError('Given times must be of type datetime.datetime') # Could also take the trajectory directly from the geometry given 0.25 # day sampling frequency... m = re.search('^.*drifter\s{1}no\.\s{1}(\d+)$', self.entry_title) id = int(m.group(1)) uu = self.dataseturi_set.get(uri__contains='buoydata') fn = nansat_filename(uu.uri) # Get all drifter ID's ids = np.loadtxt(fn, usecols=(0, )) # Get indices of current drifter ind = np.where(ids == id) # Get year, month, day and hour of each sample year = np.loadtxt(fn, usecols=(3, ))[ind] month = np.loadtxt(fn, usecols=(1, ))[ind] day = np.loadtxt(fn, usecols=(2, ))[ind] hour = np.remainder(day, np.floor(day)) * 24 # Get longitudes and latitudes lat = np.loadtxt(fn, usecols=(4, ))[ind] lon = np.loadtxt(fn, usecols=(5, ))[ind] # Pandas DataFrame df = pd.DataFrame({ 'year': year, 'month': month, 'day': np.floor(day), 'hour': hour }) # Create datetime64 array datetimes = pd.to_datetime(df) # Pick indices of required trajectory t0_diff = np.min(np.abs(datetimes - start_time.replace(tzinfo=None))) t1_diff = np.min(np.abs(datetimes - end_time.replace(tzinfo=None))) indt0 = np.argmin(np.abs(datetimes - start_time.replace(tzinfo=None))) indt1 = np.argmin(np.abs(datetimes - end_time.replace(tzinfo=None))) # Return geometry of required trajectory return LineString(zip(lon[indt0:indt1], lat[indt0:indt1]))
def get_or_create(self, uri, reprocess=False, *args, **kwargs): # ingest file to db ds, created = super(DatasetManager, self).get_or_create(uri, *args, **kwargs) # set Dataset entry_title ds.entry_title = 'SAR NRCS' ds.save() # Unless reprocess==True, we may not need to do the following... (see # managers.py in sar doppler processor) #visExists = ... # check if visualization(s) already created #if visExists and not reprocess: # warnings.warn('NO VISUALISATIONS CREATED - update managers.py') # return ds, created n = Nansat(nansat_filename(uri)) n.reproject_GCPs() n.resize(pixelsize=500) lon, lat = n.get_corners() lat_max = min(lat.max(), 85) d = Domain( NSR(3857), '-lle %f %f %f %f -ts %d %d' % (lon.min(), lat.min(), lon.max(), lat_max, n.shape()[1], n.shape()[0])) # Get all NRCS bands s0bands = [] pp = [] for key, value in n.bands().iteritems(): try: if value['standard_name'] == standard_name: s0bands.append(key) pp.append(value['polarization']) except KeyError: continue ''' Create data products ''' mm = self.__module__.split('.') module = '%s.%s' % (mm[0], mm[1]) mp = media_path(module, n.fileName) # ppath = product_path(module, n.fileName) # Create png's for each band num_products = 0 for band in s0bands: print 'Visualize', band s0_tmp = n[band] n_tmp = Nansat(domain=n, array=s0_tmp) n_tmp.reproject_GCPs() n_tmp.reproject(d) s0 = n_tmp[1] n_tmp = None mask = np.ones(s0.shape, np.uint8) mask[np.isnan(s0) + (s0 <= 0)] = 0 s0 = np.log10(s0) * 10. meta = n.bands()[band] product_filename = '%s_%s.png' % (meta['short_name'], meta['polarization']) nansatFigure(s0, mask, polarization_clims[meta['polarization']][0], polarization_clims[meta['polarization']][1], mp, product_filename) # Get DatasetParameter param = Parameter.objects.get(short_name=meta['short_name']) dsp, created = DatasetParameter.objects.get_or_create( dataset=ds, parameter=param) # Create Visualization geom, created = GeographicLocation.objects.get_or_create( geometry=WKTReader().read(n.get_border_wkt())) vv, created = Visualization.objects.get_or_create( uri='file://localhost%s/%s' % (mp, product_filename), title='%s %s polarization' % (param.standard_name, meta['polarization']), geographic_location=geom) # Create VisualizationParameter vp, created = VisualizationParameter.objects.get_or_create( visualization=vv, ds_parameter=dsp) return ds, True
def get_or_create(self, uri, reprocess=False, *args, **kwargs): # ingest file to db ds, created = super(DatasetManager, self).get_or_create(uri, *args, **kwargs) fn = nansat_filename(uri) n = Nansat(fn) # Reproject to leaflet projection xlon, xlat = n.get_corners() d = Domain( NSR(3857), '-lle %f %f %f %f -tr 1000 1000' % (xlon.min(), xlat.min(), xlon.max(), xlat.max())) n.reproject(d) # Get band numbers of required bands according to standard names speedBandNum = n._get_band_number({'standard_name': 'wind_speed'}) dirBandNum = n._get_band_number( {'standard_name': 'wind_from_direction'}) # Get numpy arrays of the bands speed = n[speedBandNum] dir = n[dirBandNum] ## It probably wont work with nansatmap... #nmap = Nansatmap(n, resolution='l') #nmap.pcolormesh(speed, vmax=18) #nmap.quiver(-speed*np.sin(dir), speed*np.cos(dir), step=10, scale=300, # width=0.002) # Set paths - this code should be inherited but I think there is an # issue in generalising the first line that defines the current module mm = self.__module__.split('.') module = '%s.%s' % (mm[0], mm[1]) mp = media_path(module, n.fileName) ppath = product_path(module, n.fileName) filename = os.path.basename(n.fileName).split('.')[0] + '.' + \ os.path.basename(n.fileName).split('.')[1] + '.png' # check uniqueness of parameter param1 = Parameter.objects.get(standard_name=n.get_metadata( bandID=speedBandNum, key='standard_name')) param2 = Parameter.objects.get(standard_name=n.get_metadata( bandID=dirBandNum, key='standard_name')) n.write_figure(os.path.join(mp, filename), bands=speedBandNum, mask_array=n['swathmask'], mask_lut={0: [128, 128, 128]}, transparency=[128, 128, 128]) # Get DatasetParameter dsp1, created = DatasetParameter.objects.get_or_create( dataset=ds, parameter=param1) # Create Visualization geom, created = GeographicLocation.objects.get_or_create( geometry=WKTReader().read(n.get_border_wkt())) vv, created = Visualization.objects.get_or_create( uri='file://localhost%s/%s' % (mp, filename), title='%s' % (param1.standard_name), geographic_location=geom) # Create VisualizationParameter vp, created = VisualizationParameter.objects.get_or_create( visualization=vv, ds_parameter=dsp1) return ds, True
def get_or_create(self, metadata_uri, data_uri, time_coverage_start=None, time_coverage_end=None, maxnum=None, minlat=-90, maxlat=90, minlon=-180, maxlon=180): """ Create al''l datasets from given file and add corresponding metadata Parameters: ---------- uri_data : str URI to file uri_metadata : str URI to metadata file time_coverage_start : timezone.datetime object Optional start time for ingestion time_coverage_end : timezone.datetime object Optional end time for ingestion Returns: ------- count : Number of ingested buoy datasets """ source, data_center, iso = self.set_metadata() metadata_path = nansat_filename(metadata_uri) data_file = nansat_filename(data_uri) data = [] # Metadata info: http://www.aoml.noaa.gov/envids/gld/general_info/dir_table.php # Data: http://www.aoml.noaa.gov/envids/gld/FtpMetadataInstructions.php metadata = self.read_metadata(metadata_path) # Read file with buoy data # Metadata info: http://www.aoml.noaa.gov/envids/gld/general_info/dir_table.php # Data: http://www.aoml.noaa.gov/envids/gld/general_info/krig_table.php # Attention! The columns in the description are not exactly correct cnt = 0 with open(data_file, 'r') as data_f: print('Open file: %s' % data_uri) for line in data_f: line = line.strip().split() # If buoy id form the line is equal to buoy id from first row in metadata if line[0] == metadata[0][0]: # Then add this line to arr data.append(line) # Else we accumulated all information about one buoy # and want to process that else: cnt += 1 # Extract metadata about the buoy from meta file self.process_data(metadata.pop(0), data, iso, data_center, source, metadata_path) data = list() # Add last buoy thom the input file cnt += 1 self.process_data(metadata.pop(0), data, iso, data_center, source, metadata_path) if len(metadata) == 0: print('All buoys were added to the database') else: warnings.warn( 'Not all buoys were added to the database! Missed %s buoys' % (len(metadata))) return cnt
def get_or_create(self, uri, *args, **kwargs): """ Ingest gsar file to geo-spaas db """ ds, created = super(DatasetManager, self).get_or_create(uri, *args, **kwargs) # TODO: Check if the following is necessary if not type(ds) == Dataset: return ds, False # set Dataset entry_title ds.entry_title = 'SAR Doppler' ds.save() fn = nansat_filename(uri) n = Nansat(fn, subswath=0) gg = WKTReader().read(n.get_border_wkt()) if ds.geographic_location.geometry.area>gg.area: return ds, False # Update dataset border geometry # This must be done every time a Doppler file is processed. It is time # consuming but apparently the only way to do it. Could be checked # though... swath_data = {} lon = {} lat = {} astep = {} rstep = {} az_left_lon = {} ra_upper_lon = {} az_right_lon = {} ra_lower_lon = {} az_left_lat = {} ra_upper_lat = {} az_right_lat = {} ra_lower_lat = {} num_border_points = 10 border = 'POLYGON((' for i in range(self.N_SUBSWATHS): # Read subswaths swath_data[i] = Nansat(fn, subswath=i) # Should use nansat.domain.get_border - see nansat issue #166 # (https://github.com/nansencenter/nansat/issues/166) lon[i], lat[i] = swath_data[i].get_geolocation_grids() astep[i] = max(1, (lon[i].shape[0] / 2 * 2 - 1) / num_border_points) rstep[i] = max(1, (lon[i].shape[1] / 2 * 2 - 1) / num_border_points) az_left_lon[i] = lon[i][0:-1:astep[i], 0] az_left_lat[i] = lat[i][0:-1:astep[i], 0] az_right_lon[i] = lon[i][0:-1:astep[i], -1] az_right_lat[i] = lat[i][0:-1:astep[i], -1] ra_upper_lon[i] = lon[i][-1, 0:-1:rstep[i]] ra_upper_lat[i] = lat[i][-1, 0:-1:rstep[i]] ra_lower_lon[i] = lon[i][0, 0:-1:rstep[i]] ra_lower_lat[i] = lat[i][0, 0:-1:rstep[i]] lons = np.concatenate((az_left_lon[0], ra_upper_lon[0], ra_upper_lon[1], ra_upper_lon[2], ra_upper_lon[3], ra_upper_lon[4], np.flipud(az_right_lon[4]), np.flipud(ra_lower_lon[4]), np.flipud(ra_lower_lon[3]), np.flipud(ra_lower_lon[2]), np.flipud(ra_lower_lon[1]), np.flipud(ra_lower_lon[0]))) # apply 180 degree correction to longitude - code copied from # get_border_wkt... # TODO: simplify using np.mod? for ilon, llo in enumerate(lons): lons[ilon] = copysign(acos(cos(llo * pi / 180.)) / pi * 180, sin(llo * pi / 180.)) lats = np.concatenate((az_left_lat[0], ra_upper_lat[0], ra_upper_lat[1], ra_upper_lat[2], ra_upper_lat[3], ra_upper_lat[4], np.flipud(az_right_lat[4]), np.flipud(ra_lower_lat[4]), np.flipud(ra_lower_lat[3]), np.flipud(ra_lower_lat[2]), np.flipud(ra_lower_lat[1]), np.flipud(ra_lower_lat[0]))) poly_border = ','.join(str(llo) + ' ' + str(lla) for llo, lla in zip(lons, lats)) wkt = 'POLYGON((%s))' % poly_border new_geometry = WKTReader().read(wkt) # Get geolocation of dataset - this must be updated geoloc = ds.geographic_location # Check geometry, return if it is the same as the stored one created = False if geoloc.geometry != new_geometry: # Change the dataset geolocation to cover all subswaths geoloc.geometry = new_geometry geoloc.save() created = True return ds, created
def process(self, uri, *args, **kwargs): """ Create data products """ ds, created = self.get_or_create(uri, *args, **kwargs) fn = nansat_filename(uri) swath_data = {} # Read subswaths for i in range(self.N_SUBSWATHS): swath_data[i] = Doppler(fn, subswath=i) # Get module name mm = self.__module__.split('.') module = '%s.%s' % (mm[0], mm[1]) # Set media path (where images will be stored) mp = media_path(module, swath_data[i].filename) # Set product path (where netcdf products will be stored) ppath = product_path(module, swath_data[i].filename) # Loop subswaths, process each of them and create figures for display with leaflet for i in range(self.N_SUBSWATHS): is_corrupted = False # Check if the file is corrupted try: inci = swath_data[i]['incidence_angle'] # TODO: What kind of exception ? except: is_corrupted = True continue # Add Doppler anomaly swath_data[i].add_band(array=swath_data[i].anomaly(), parameters={ 'wkv': 'anomaly_of_surface_backwards_doppler_centroid_frequency_shift_of_radar_wave' }) # Get band number of DC freq, then DC polarisation band_number = swath_data[i]._get_band_number({ 'standard_name': 'surface_backwards_doppler_centroid_frequency_shift_of_radar_wave', }) pol = swath_data[i].get_metadata(bandID=band_number, key='polarization') # Calculate total geophysical Doppler shift fdg = swath_data[i].geophysical_doppler_shift() swath_data[i].add_band( array=fdg, parameters={ 'wkv': 'surface_backwards_doppler_frequency_shift_of_radar_wave_due_to_surface_velocity' }) # Set filename of exported netcdf fn = os.path.join(ppath, os.path.basename(swath_data[i].filename).split('.')[0] + 'subswath%d.nc' % i) # Set filename of original gsar file in metadata swath_data[i].set_metadata(key='Originating file', value=swath_data[i].filename) # Export data to netcdf print('Exporting %s (subswath %d)' % (swath_data[i].filename, i)) swath_data[i].export(filename=fn) # Add netcdf uri to DatasetURIs ncuri = os.path.join('file://localhost', fn) new_uri, created = DatasetURI.objects.get_or_create(uri=ncuri, dataset=ds) # Reproject to leaflet projection xlon, xlat = swath_data[i].get_corners() d = Domain(NSR(3857), '-lle %f %f %f %f -tr 1000 1000' % (xlon.min(), xlat.min(), xlon.max(), xlat.max())) swath_data[i].reproject(d, eResampleAlg=1, tps=True) # Check if the reprojection failed try: inci = swath_data[i]['incidence_angle'] except: is_corrupted = True warnings.warn('Could not read incidence angles - reprojection failed') continue # Create visualizations of the following bands (short_names) ingest_creates = ['valid_doppler', 'valid_land_doppler', 'valid_sea_doppler', 'dca', 'fdg'] for band in ingest_creates: filename = '%s_subswath_%d.png' % (band, i) # check uniqueness of parameter param = Parameter.objects.get(short_name=band) fig = swath_data[i].write_figure( os.path.join(mp, filename), bands=band, mask_array=swath_data[i]['swathmask'], mask_lut={0: [128, 128, 128]}, transparency=[128, 128, 128]) if type(fig) == Figure: print 'Created figure of subswath %d, band %s' % (i, band) else: warnings.warn('Figure NOT CREATED') # Get or create DatasetParameter dsp, created = DatasetParameter.objects.get_or_create(dataset=ds, parameter=param) # Create GeographicLocation for the visualization object geom, created = GeographicLocation.objects.get_or_create( geometry=WKTReader().read(swath_data[i].get_border_wkt())) # Create Visualization vv, created = Visualization.objects.get_or_create( uri='file://localhost%s/%s' % (mp, filename), title='%s (swath %d)' % (param.standard_name, i + 1), geographic_location=geom ) # Create VisualizationParameter vp, created = VisualizationParameter.objects.get_or_create( visualization=vv, ds_parameter=dsp ) # TODO: consider merged figures like Jeong-Won has added in the development branch return ds, not is_corrupted
def update_geophysical_doppler(dopplerFile, t0, t1, swath, sensor='ASAR', platform='ENVISAT'): dop2correct = Doppler(dopplerFile) bandnum = dop2correct._get_band_number({ 'standard_name': 'surface_backwards_doppler_centroid_frequency_shift_of_radar_wave' }) polarization = dop2correct.get_metadata(bandID=bandnum, key='polarization') lon,lat = dop2correct.get_geolocation_grids() indmidaz = lat.shape[0]/2 indmidra = lat.shape[1]/2 if lat[indmidaz,indmidra]>lat[0,indmidra]: use_pass = '******' else: use_pass = '******' # Get datasets DS = Dataset.objects.filter(source__platform__short_name=platform, source__instrument__short_name=sensor) dopDS = DS.filter( parameters__short_name = 'dca', time_coverage_start__gte = t0, time_coverage_start__lt = t1 ) swath_files = [] for dd in dopDS: try: fn = dd.dataseturi_set.get( uri__endswith='subswath%s.nc' %swath).uri except DatasetURI.DoesNotExist: continue n = Doppler(fn) try: dca = n.anomaly(pol=polarization) except OptionError: # wrong polarization.. continue lon,lat=n.get_geolocation_grids() indmidaz = lat.shape[0]/2 indmidra = lat.shape[1]/2 if lat[indmidaz,indmidra]>lat[0,indmidra]: orbit_pass = '******' else: orbit_pass = '******' if use_pass==orbit_pass: swath_files.append(fn) valid_land = np.array([]) valid = np.array([]) for ff in swath_files: n = Nansat(ff) view_bandnum = n._get_band_number({ 'standard_name': 'sensor_view_angle' }) std_bandnum = n._get_band_number({ 'standard_name': \ 'standard_deviation_of_surface_backwards_doppler_centroid_frequency_shift_of_radar_wave', }) pol = n.get_metadata(bandID=std_bandnum, key='polarization') # For checking when antenna pattern changes if valid.shape==(0,): valid = n['valid_doppler'] dca0 = n['dca'] dca0[n['valid_doppler']==0] = np.nan dca0[n['valid_sea_doppler']==1] = dca0[n['valid_sea_doppler']==1] - \ n['fww'][n['valid_sea_doppler']==1] view_angle0 = n[view_bandnum] else: validn = n['valid_doppler'] dca0n = n['dca'] dca0n[n['valid_doppler']==0] = np.nan dca0n[n['valid_sea_doppler']==1] = dca0n[n['valid_sea_doppler']==1] - \ n['fww'][n['valid_sea_doppler']==1] view_angle0n = n[view_bandnum] if not validn.shape==valid.shape: if validn.shape[1] > valid.shape[1]: valid = np.resize(valid, (valid.shape[0], validn.shape[1])) dca0 = np.resize(dca0, (dca0.shape[0], dca0n.shape[1])) view_angle0 = np.resize(view_angle0, (view_angle0.shape[0], view_angle0n.shape[1])) else: validn = np.resize(validn, (validn.shape[0], valid.shape[1])) dca0n = np.resize(dca0n, (dca0n.shape[0], dca0.shape[1])) view_angle0n = np.resize(view_angle0n, (view_angle0n.shape[0], view_angle0.shape[1])) valid = np.concatenate((valid, validn)) dca0 = np.concatenate((dca0, dca0n)) view_angle0 = np.concatenate((view_angle0, view_angle0n)) if valid_land.shape==(0,): valid_land = n['valid_land_doppler'][n['valid_land_doppler'].any(axis=1)] dca = n['dca'][n['valid_land_doppler'].any(axis=1)] view_angle = n[view_bandnum][n['valid_land_doppler'].any(axis=1)] std_dca = n[std_bandnum][n['valid_land_doppler'].any(axis=1)] else: vn = n['valid_land_doppler'][n['valid_land_doppler'].any(axis=1)] dcan = n['dca'][n['valid_land_doppler'].any(axis=1)] view_angle_n = n[view_bandnum][n['valid_land_doppler'].any(axis=1)] std_dca_n = n[std_bandnum][n['valid_land_doppler'].any(axis=1)] if not vn.shape==valid_land.shape: # Resize arrays - just for visual inspection. Actual interpolation # is view angle vs doppler anomaly if vn.shape[1] > valid_land.shape[1]: valid_land = np.resize(valid_land, (valid_land.shape[0], vn.shape[1])) dca = np.resize(dca, (dca.shape[0], vn.shape[1])) view_angle = np.resize(view_angle, (view_angle.shape[0], vn.shape[1])) std_dca = np.resize(std_dca, (std_dca.shape[0], vn.shape[1])) if vn.shape[1] < valid_land.shape[1]: vn = np.resize(vn, (vn.shape[0], valid_land.shape[1])) dcan = np.resize(dcan, (dcan.shape[0], valid_land.shape[1])) view_angle_n = np.resize(view_angle_n, (view_angle_n.shape[0], valid_land.shape[1])) std_dca_n = np.resize(std_dca_n, (std_dca_n.shape[0], valid_land.shape[1])) valid_land = np.concatenate((valid_land, vn)) dca = np.concatenate((dca, dcan)) view_angle = np.concatenate((view_angle, view_angle_n)) std_dca = np.concatenate((std_dca, std_dca_n)) view_angle0 = view_angle0.flatten() dca0 = dca0.flatten() view_angle0 = np.delete(view_angle0, np.where(np.isnan(dca0))) dca0 = np.delete(dca0, np.where(np.isnan(dca0))) ind = np.argsort(view_angle0) view_angle0 = view_angle0[ind] dca0 = dca0[ind] # Set dca, view_angle and std_dca to nan where not land dca[valid_land==0] = np.nan std_dca[valid_land==0] = np.nan view_angle[valid_land==0] = np.nan dca = dca.flatten() std_dca = std_dca.flatten() view_angle = view_angle.flatten() dca = np.delete(dca, np.where(np.isnan(dca))) std_dca = np.delete(std_dca, np.where(np.isnan(std_dca))) view_angle = np.delete(view_angle, np.where(np.isnan(view_angle))) ind = np.argsort(view_angle) view_angle = view_angle[ind] dca = dca[ind] std_dca = std_dca[ind] freqLims = [-200,200] # Show this in presentation: plt.subplot(2,1,1) count, anglebins, dcabins, im = plt.hist2d(view_angle0, dca0, 100, cmin=1, range=[[np.min(view_angle), np.max(view_angle)], freqLims]) plt.colorbar() plt.title('Wind Doppler subtracted') plt.subplot(2,1,2) count, anglebins, dcabins, im = plt.hist2d(view_angle, dca, 100, cmin=1, range=[[np.min(view_angle), np.max(view_angle)], freqLims]) plt.colorbar() plt.title('Doppler over land') #plt.show() plt.close() countLims = 200 #{ # 0: 600, # 1: 250, # 2: 500, # 3: 140, # 4: 130, #} dcabins_grid, anglebins_grid = np.meshgrid(dcabins[:-1], anglebins[:-1]) anglebins_vec = anglebins_grid[count>countLims] dcabins_vec = dcabins_grid[count>countLims] #anglebins_vec = anglebins_grid[count>countLims[swath]] #dcabins_vec = dcabins_grid[count>countLims[swath]] va4interp = [] rb4interp = [] std_rb4interp = [] for i in range(len(anglebins)-1): if i==0: ind0 = 0 else: ind0 = np.where(view_angle>anglebins[i])[0][0] ind1 = np.where(view_angle<=anglebins[i+1])[0][-1] va4interp.append(np.mean(view_angle[ind0:ind1])) rb4interp.append(np.median(dca[ind0:ind1])) std_rb4interp.append(np.std(dca[ind0:ind1])) va4interp = np.array(va4interp) rb4interp = np.array(rb4interp) std_rb4interp = np.array(std_rb4interp) van = dop2correct['sensor_view'] rbfull = van.copy() rbfull[:,:] = np.nan # Is there a more efficient method than looping? import time start_time = time.time() for ii in range(len(anglebins)-1): vaii0 = anglebins[ii] vaii1 = anglebins[ii+1] rbfull[(van>=vaii0) & (van<=vaii1)] = \ np.median(dca[(view_angle>=vaii0) & (view_angle<=vaii1)]) #print("--- %s seconds ---" % (time.time() - start_time)) plt.plot(np.mean(van, axis=0), np.mean(rbfull, axis=0), '.') #plt.plot(anglebins_vec, dcabins_vec, '.') #plt.show() plt.close() #guess = [.1,.1,.1,.1,.1,.1] #[a,b,c,d,e,f], params_cov = optimize.curve_fit(rb_model_func, # va4interp, rb4interp, guess) # #anglebins_vec, dcabins_vec, guess) #n = Doppler(swath_files[0]) #van = np.mean(dop2correct['sensor_view'], axis=0) #plt.plot(van, rb_model_func(van,a,b,c,d,e,f), 'r--') #plt.plot(anglebins_vec, dcabins_vec, '.') #plt.show() #ww = 1./std_rb4interp #ww[np.isinf(ww)] = 0 #rbinterp = UnivariateSpline( # va4interp, # rb4interp, # w = ww, # k = 5 # ) #van = dop2correct['sensor_view'] #y = rbinterp(van.flatten()) #rbfull = y.reshape(van.shape) #plt.plot(np.mean(van, axis=0), np.mean(rbfull, axis=0), 'r--') #plt.plot(anglebins_vec, dcabins_vec, '.') #plt.show() band_name = 'fdg_corrected' fdg = dop2correct.anomaly() - rbfull #plt.imshow(fdg, vmin=-60, vmax=60) #plt.colorbar() #plt.show() dop2correct.add_band(array=fdg, parameters={ 'wkv':'surface_backwards_doppler_frequency_shift_of_radar_wave_due_to_surface_velocity', 'name': band_name } ) current = -(np.pi*(fdg - dop2correct['fww']) / 112 / np.sin(dop2correct['incidence_angle']*np.pi/180)) dop2correct.add_band(array=current, parameters={'name': 'current', 'units': 'm/s', 'minmax': '-2 2'} ) land = np.array([]) # add land data for accuracy calculation if land.shape==(0,): land = dop2correct['valid_land_doppler'][dop2correct['valid_land_doppler'].any(axis=1)] land_fdg = fdg[dop2correct['valid_land_doppler'].any(axis=1)] else: landn = dop2correct['valid_land_doppler'][dop2correct['valid_land_doppler'].any(axis=1)] land_fdgn = fdg[dop2correct['valid_land_doppler'].any(axis=1)] if not landn.shape==land.shape: if landn.shape[1] > land.shape[1]: land = np.resize(land, (land.shape[0], landn.shape[1])) land_fdg = np.resize(land_fdg, (land_fdg.shape[0], land_fdgn.shape[1])) if landn.shape[1] < land.shape[1]: landn = np.resize(landn, (landn.shape[0], land.shape[1])) land_fdgn = np.resize(land_fdgn, (land_fdgn.shape[0], land.shape[1])) land = np.concatenate((land, landn)) land_fdg = np.concatenate((land_fdg, land_fdgn)) module = 'sar_doppler' DS = Dataset.objects.get(dataseturi__uri__contains=dop2correct.fileName) #fn = '/mnt/10.11.12.232/sat_downloads_asar/level-0/2010-01/gsar_rvl/' \ # + dop2correct.fileName.split('/')[-2]+'.gsar' mp = media_path(module, nansat_filename( DS.dataseturi_set.get( uri__endswith='gsar').uri)) ppath = product_path(module, nansat_filename( DS.dataseturi_set.get( uri__endswith='gsar').uri)) # See managers.py -- this must be generalized! pngfilename = '%s_subswath_%d.png'%(band_name, swath) ncfilename = '%s_subswath_%d.nc'%(band_name, swath) # Export to new netcdf with fdg as the only band expFile = os.path.join(ppath, ncfilename) print 'Exporting file: %s\n\n' %expFile dop2correct.export(expFile, bands=[dop2correct._get_band_number(band_name)]) ncuri = os.path.join('file://localhost', expFile) new_uri, created = DatasetURI.objects.get_or_create(uri=ncuri, dataset=DS) # Reproject to leaflet projection xlon, xlat = dop2correct.get_corners() dom = Domain(NSR(3857), '-lle %f %f %f %f -tr 1000 1000' % ( xlon.min(), xlat.min(), xlon.max(), xlat.max())) dop2correct.reproject(dom, eResampleAlg=1, tps=True) # Update figure dop2correct.write_figure(os.path.join(mp, pngfilename), clim = [-60,60], bands=band_name, mask_array=dop2correct['swathmask'], mask_lut={0:[128,128,128]}, transparency=[128,128,128]) print("--- %s seconds ---" % (time.time() - start_time)) land_fdg[land==0] = np.nan print('Standard deviation over land: %.2f' %np.nanstd(land_fdg))