コード例 #1
0
def makeTable(G, trunc=False):
    '''

    '''

    data = readData(G)
    groupMask, counts, mask, extraName = getGroupBounds(G, 3)
    maxOrder = max(getGroupBounds(G, 3)[1].values())
    order = 2

    table = np.zeros((11, 11))

    # Load the reference
    table[0, 0] = data['k']['ref']
    table[1:, 0] = data['dens']['ref']
    for homog in range(5):
        # Get the non-energy truncated results
        table[0, homog + 1] = data['k']['klt_combine'][homog][maxOrder - 1]
        table[1:, homog + 1] = data['dens']['klt_combine'][homog][maxOrder - 1]
        # Get the energy truncated results
        table[0, homog + 6] = data['k']['klt_combine'][homog][order]
        table[1:, homog + 6] = data['dens']['klt_combine'][homog][order]

    table = table[:, [0, 6, 7, 8, 9, 10]] if trunc else table[:,
                                                              [0, 2, 3, 4, 5]]
    label = ['$k_{\\text{eff}}$', 'Cell {}']
    print '\nData table for Truncation={}'.format(trunc)
    for i, row in enumerate(table):
        head = label[0] if i == 0 else label[1].format(i)
        print head + '&' + ' & '.join(['{: 4.3f}'.format(r)
                                       for r in row]) + '\\\\'
        if i == 0:
            print '\\hline'
コード例 #2
0
def readData(G):
    '''
    Reads data from the data directory that has been make via Unotran

    Returns the % relative error for both k and pin-cell fission density
    '''
    groupMask, counts, mask, extraName = getGroupBounds(G, 3)
    maxOrder = max(getGroupBounds(G, 3)[1].values())
    data = {}
    for d in ['dens', 'k']:
        # Load the reference
        try:
            ref = np.load('reference/ref_{}_{}_{}.npy'.format(d, 'full', G))
            if d == 'dens':
                # Normalize the reference
                ref /= np.linalg.norm(ref)
                # Get the density for each pin
                ref = np.sum(ref.reshape(10, -1), axis=1)
                ref /= np.mean(ref)
        except IOError:
            raise IOError('Missing reference for {} with {} groups'.format(
                d, G))
        data[d] = {}
        # Add the reference to the data
        data[d]['ref'] = ref
        for basis in [
                'dlp', 'klt_full', 'klt_combine', 'klt_uo2', 'klt_mox',
                'klt_pins_full'
        ]:
            data[d][basis] = {}
            for homog in range(5):
                data[d][basis][homog] = []
                for o in range(maxOrder):
                    # Load the data
                    try:
                        sol = np.load(
                            'data/dgm_{}_{}_{}_g{}_c{}_o{}_h{}.npy'.format(
                                d, basis, 'full', G, 3, o, homog))
                        if d == 'dens':
                            sol /= np.linalg.norm(sol)
                            sol = np.sum(sol.reshape(10, -1), axis=1)
                            sol /= np.mean(sol)
                    except IOError as e:
                        print('Missing data/dgm_{}_{}_{}_g{}_c{}_o{}_h{}.npy'.
                              format(d, basis, 'full', G, 3, o, homog))
                        sol = np.zeros(ref.shape)
                    # Compute the error
                    err = (sol - ref) / ref * 100

                    data[d][basis][homog].append(err)

    return data
コード例 #3
0
def plot(A, basisType, contig, bName):
    colors = ['b', 'g', 'm']
    plt.clf()
    G = A.shape[1]

    groupMask, counts, mask, extraName = getGroupBounds(G, contig)

    bounds = [0]
    for i, a in enumerate(A):
        ming = 0
        for CG, nGroups in counts.items():
            maxg = ming + nGroups
            plt.plot(range(ming, maxg), a[ming:maxg], c=colors[i], label='order {}'.format(i))
            bounds.append(maxg)
            ming += nGroups

    bounds = np.array(bounds)
    plt.vlines(bounds[1:-1] - 0.5, -1, 1)
    plt.xlim([0, G - 1])
    plt.ylim([-1, 1])
    plt.xlabel('Energy group')
    plt.ylabel('Normalized basis')
    handles, labels = plt.gca().get_legend_handles_labels()
    by_label = OrderedDict(zip(labels, handles))
    legend = plt.legend(by_label.values(), by_label.keys(), loc='upper center', ncol=3, fancybox=True, framealpha=0.0, bbox_to_anchor=(0.5, 1.1))
    plt.savefig('{}.png'.format(bName), transparent=True, additional_artists=[legend])
    return
コード例 #4
0
def makeBasis(G, contig):
    # Get the coarse group bounds
    groupMask, counts, mask, extraName = getGroupBounds(G, contig)
    eName = ('_' + extraName) if extraName is not None else ''

    print 'building {0}{2}_{1}g'.format('dlp', G, eName)
    print counts

    # Initialize the basis lists
    basis = np.zeros((G, G))

    # Compute the basis for each coarse group
    for group, order in counts.items():
        # Get the DLP basis for the given order
        A = DLP(order)

        # Get the mask for the currect group
        m = groupMask == group

        #plt.plot(A[np.argsort(mask[m]), :3])
        # plt.show()

        # Slice into the basis with the current group
        basis[np.ix_(m, m)] = A[np.argsort(mask[m])]

    testBasis(basis)

    # Save the basis to file
    bName = 'basis/{0}{2}_{1}g'.format('dlp', G, eName)
    np.savetxt(bName, basis)

    plotBasis(G, bName)
コード例 #5
0
def makePlots(G, pType='phi'):
    '''

    '''

    groupMask, counts, mask, extraName = getGroupBounds(G, 3)
    maxOrder = max(getGroupBounds(G, 3)[1].values())
    lowOrder = 2
    fm, cm, mm, bounds = setGeometry('full')

    dx = []
    for i, c in enumerate(cm):
        if i == len(cm) - 1:
            break
        for x in np.linspace(c, cm[i + 1], fm[i] + 1)[:-1]:
            dx.append(x)
    dx.append(cm[-1])
    dx = np.array(dx)
    x = 0.5 * (dx[1:] + dx[:-1])

    labels = ['Case 1', 'Case 2', 'Case 3', 'Case 4']
    ls = [':', '-', '-.', '--']
    for order in [lowOrder, maxOrder - 1]:
        for group in (range(G) if pType == 'phi' else [0]):
            ref = np.load('reference/ref_{}_{}_{}.npy'.format(
                pType, 'full', G))
            if pType == 'phi':
                ref = ref[0, group]
            ref /= np.linalg.norm(ref)
            plt.plot(x, ref, label='Reference')

            for homog in range(1, 5):
                sol = np.load('data/dgm_{}_{}_{}_g{}_c{}_o{}_h{}.npy'.format(
                    pType, 'klt_combine', 'full', G, 3, order, homog))
                if pType == 'phi':
                    sol = sol[0, group]
                sol /= np.linalg.norm(sol)
                plt.plot(x, sol, ls=ls[homog - 1], label=labels[homog - 1])
            plt.legend(fancybox=True, framealpha=0.0)
            plt.xlabel('length [cm]')
            plt.ylabel('normalized scalar flux' if pType ==
                       'phi' else 'normalized fission density')
            plt.xlim([0.0, 12.8])
            plt.savefig('plots/{}_g{}_o{}.png'.format(pType, group, order),
                        transparent=True)
            plt.clf()
コード例 #6
0
def getInfo(task):
    Gs = [44, 238, 1968]
    item = 0
    for G in Gs:
        makeSnapPlot = True
        for contig in [3]:
            # makePlot(G)
            for basisType in ['uo2', 'mox', 'pins_full', 'combine', 'full', 'pins_core1', 'pins_core2', 'assay_12', 'assay_13', 'assay_all', 'core1', 'core2']:
                if makeSnapPlot:
                    makePlot(G)
                    makeSnapePlot = False

                if item == task:
                    x = getGroupBounds(G, contig)[1]
                    print x, np.cumsum(x.values())
                    return G, basisType, contig
                else:
                    item += 1
コード例 #7
0
def setGroup(G, contig, order=None, basisType='dlp'):
    groupBounds, counts, mask, bName = getGroupBounds(G, contig)

    pydgm.control.xs_name = 'XS/{}gXS.anlxs'.format(G).ljust(256)

    print 'using basis basis/{}_{}_{}g'.format(basisType, bName, G)
    pydgm.control.dgm_basis_name = 'basis/{}_{}_{}g'.format(
        basisType, bName, G).ljust(256)

    if order is not None:
        print basisType, G, counts.values(), order, [
            min(d - 1, order) for d in counts.values()
        ]
        pydgm.control.truncation_map = [
            min(d - 1, order) for d in counts.values()
        ]

    if len(groupBounds) > 0:
        pydgm.control.energy_group_map = np.array(groupBounds) + 1
コード例 #8
0
def getInfo(task):
    Gs = [44, 238, 1968]
    geos = ['full']
    contigs = [3]

    item = 0
    for i, G in enumerate(Gs):
        for homogOption in [0, 1, 2, 3, 4]:
            for contig in contigs:
                maxOrder = max(getGroupBounds(G, contig)[1].values())
                for geo in geos:
                    # Select the basis based on the geometry
                    if geo == 0:
                        basisTypes = ['dlp']
                    elif geo == 'full':
                        basisTypes = [
                            'dlp', 'klt_full', 'klt_combine', 'klt_uo2',
                            'klt_mox', 'klt_pins_full'
                        ]
                    elif geo == 'core1':
                        basisTypes = [
                            'dlp', 'klt_assay_12', 'klt_assay_all',
                            'klt_core1', 'klt_pins_core1'
                        ]
                    elif geo == 'core2':
                        basisTypes = [
                            'dlp', 'klt_assay_13', 'klt_assay_all',
                            'klt_core2', 'klt_pins_core2'
                        ]

                    for j, basisType in enumerate(basisTypes):
                        for order in range(maxOrder):
                            if item == task:
                                return geo, G, basisType, order, contig, homogOption
                            else:
                                item += 1
コード例 #9
0
def makeBasis(G, basisType, contig, flat=False):
    if basisType == 'full':
        name = 'klt_full'
        data = getSnapshots(G, 'full')
    elif basisType == 'mox':
        name = 'klt_mox'
        data = getSnapshots(G, 'mox')
    elif basisType == 'uo2':
        name = 'klt_uo2'
        data = getSnapshots(G, 'uo2-1')
    elif basisType == 'pins_full':
        name = 'klt_pins_full'
        data = np.concatenate((getSnapshots(G, 'uo2-1'), getSnapshots(G, 'mox')), axis=1)
    elif basisType == 'pins_core1':
        name = 'klt_pins_core1'
        data = np.concatenate((getSnapshots(G, 'uo2-1'), getSnapshots(G, 'uo2-2'), getSnapshots(G, 'uo2-Gd')), axis=1)
    elif basisType == 'pins_core2':
        name = 'klt_pins_core2'
        data = np.concatenate((getSnapshots(G, 'uo2-1'), getSnapshots(G, 'uo2-2'), getSnapshots(G, 'mox')), axis=1)
    elif basisType == 'combine':
        name = 'klt_combine'
        data = np.concatenate((getSnapshots(G, 'uo2-1'), getSnapshots(G, 'mox'), getSnapshots(G, 'junction')), axis=1)
    elif basisType == 'core1':
        name = 'klt_core1'
        data = getSnapshots(G, 'core1')
    elif basisType == 'core2':
        name = 'klt_core2'
        data = getSnapshots(G, 'core2')
    elif basisType == 'assay_12':
        name = 'klt_assay_12'
        data = np.concatenate((getSnapshots(G, 'assay1'), getSnapshots(G, 'assay2')), axis=1)
    elif basisType == 'assay_13':
        name = 'klt_assay_13'
        data = np.concatenate((getSnapshots(G, 'assay1'), getSnapshots(G, 'assay3')), axis=1)
    elif basisType == 'assay_all':
        name = 'klt_assay_all'
        data = np.concatenate((getSnapshots(G, 'assay1'), getSnapshots(G, 'assay2'), getSnapshots(G, 'assay3')), axis=1)
    else:
        raise NotImplementedError('The type: {} has not been implemented'.format(basisType))

    # Get the coarse group bounds
    groupMask, counts, mask, extraName = getGroupBounds(G, contig)
    eName = ('_' + extraName) if extraName is not None else ''

    # Initialize the basis lists
    basis = np.zeros((G, G))

    # Compute the basis for each coarse group
    for group, order in counts.items():
        # Get the mask for the currect group
        m = groupMask == group

        # Get the DLP basis for the given order
        A = KLT(data[m], flat)

        # Slice into the basis with the current group
        basis[np.ix_(m, m)] = A

    bName = 'basis/{0}{2}_{1}g'.format(name, G, eName)
    # Save the basis to file
    np.savetxt(bName, basis)

    plotBasis(G, basisType, contig, bName)
コード例 #10
0
def run():
    solver = 'eigen'
    geo = 'full'
    G = 44
    basisType = 'dlp'
    contig = 3
    order = 12

    path = 'data'

    # Solve the DGM Problem
    setVariables(G, geo, solver, True, contig, basisType, order)

    # Setup the variable containers
    pydgm.dgmsolver.initialize_dgmsolver()

    # Give some dummy phi
    pydgm.state.phi = np.arange(np.product(pydgm.state.phi.shape)).reshape(
        pydgm.state.phi.shape) + 1

    # Get the right shapes from the inputs
    nL, nG, nC = pydgm.state.phi.shape

    # Compute the flux momenst
    pydgm.dgmsolver.compute_flux_moments()

    # Get the flux moments and shape
    m_phi = pydgm.state.mg_phi[0].T
    nCG = m_phi.shape[1]

    # Compute the test cross sections
    pydgm.dgmsolver.compute_xs_moments()
    sig_t_test = pydgm.state.mg_sig_t

    # Get the group bounds
    groupBounds, counts, mask, bName = getGroupBounds(G, contig)
    nO = np.max(counts.values())
    bounds = [0]
    for o in range(np.max(counts.keys()) + 1):
        bounds.append(bounds[o] + counts[o])

    # Load the basis
    P = np.loadtxt('basis/{}_{}_{}g'.format(basisType, bName, G))

    # Get the fine group flux
    phi = pydgm.state.phi[0, :, :]

    nMat = np.max(pydgm.mesh.mmap)

    # Create the XS containers
    ex_sig_t = np.zeros((nMat, nCG, nO))
    m_sig_t = np.zeros((nC, nCG, nO))

    # Loop over the spatial cells
    for m in range(nMat):
        # Get the fine XS
        sig_t = pydgm.material.sig_t[:, m]

        # Loop over the energy group
        for cg in range(nCG):
            P_G = P.T[bounds[cg]:bounds[cg + 1]]
            for gp in range(bounds[cg], bounds[cg + 1]):
                for o, p in enumerate(P_G):
                    ex_sig_t[m, cg, o] += p[gp] * sig_t[gp] * P_G[0, gp]

    print ex_sig_t.shape

    print m_phi.shape

    for c in range(nC):
        pass

    exit()

    m_sig_t[j] = m_sig_t.dot(m_phi) / m_phi[0]

    print m_phi
    print m_sig_t.T
    print sig_t_test