def main(argv): (train_x, train_y), (test_x, test_y) = load_data() feature_columns = [ tf.feature_column.categorical_column_with_identity(key='Pclass', num_buckets=4), tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female']), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S']), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch') ] optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) model = tf.estimator.LinearClassifier(feature_columns=feature_columns, optimizer=optimizer) model.train(input_fn=lambda: inp(test_x, test_y), steps=10000) eval_result = model.evaluate(input_fn=lambda: inp(test_x, test_y)) average_loss = eval_result['average_loss'] print('\n' + 80 * '*') print('Error: ${:.0f}'.format(average_loss**0.5)) print()
def main(argv): (train_x, train_y), (test_x, test_y) = load_data() feature_columns = [ tf.feature_column.categorical_column_with_identity(key='Pclass', num_buckets=5), tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female']), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S']), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch') ] optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) model = tf.estimator.LinearClassifier(feature_columns=feature_columns, optimizer=optimizer) model.train(input_fn=lambda: inp(train_x, train_y, 'TRAIN'), steps=30000) eval_result = model.evaluate(input_fn=lambda: inp(test_x, test_y, 'EVAL')) average_loss = eval_result['average_loss'] print('Average loss: ' + str(average_loss)) brute_results = model.predict( input_fn=lambda: inp(load_submit(), (), 'PREDICT')) net_results = [] for line in brute_results: net_results.append(line['class_ids'][0]) write_to_file(net_results)
def main(argv): feature_columns = [ tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_identity( key='Pclass', num_buckets=5)), tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female'])), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S'])), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch'), tf.feature_column.numeric_column(key='agcl'), tf.feature_column.numeric_column(key='fsize'), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='title', vocabulary_list=['Mr', 'Mrs', 'Miss']), dimension=3), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='deck', vocabulary_list=cabin_list), dimension=3), tf.feature_column.numeric_column(key='Fare_Per_Person') ] (train_x, train_y), (test_x, test_y) = load_data(ratio=0.7) units = 2 * [30] optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) model = tf.estimator.DNNClassifier(hidden_units=units, feature_columns=feature_columns, optimizer=optimizer, activation_fn=tf.nn.sigmoid) model.train(input_fn=lambda: inp(train_x, train_y, 'TRAIN', rep=3000), steps=600000) eval_result = model.evaluate(input_fn=lambda: inp(test_x, test_y, 'EVAL', rep=1)) average_loss = eval_result['average_loss'] print('Average loss: ' + str(average_loss)) brute_results = model.predict(input_fn=lambda: inp(load_submit(), (), 'PREDICT')) net_results = [] for line in brute_results: net_results.append(line['class_ids'][0]) write_to_file(net_results)
def main(argv): feature_columns = [ tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_identity(key='Pclass', num_buckets=5)), tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female'])), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S'])), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch'), tf.feature_column.numeric_column(key='agcl'), tf.feature_column.numeric_column(key='fsize'), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='title', vocabulary_list=['Mr', 'Mrs', 'Miss']), dimension=3), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='deck', vocabulary_list=cabin_list), dimension=3), tf.feature_column.numeric_column(key='Fare_Per_Person') ] (train_x, train_y), (test_x, test_y) = load_data(ratio=0.7) units = 2 * [30] optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) model = tf.estimator.DNNClassifier(hidden_units=units, feature_columns=feature_columns, optimizer=optimizer, activation_fn=tf.nn.sigmoid) model.train(input_fn=lambda: inp(train_x, train_y, 'TRAIN', rep=3000), steps=600000) eval_result = model.evaluate( input_fn=lambda: inp(test_x, test_y, 'EVAL', rep=1)) average_loss = eval_result['average_loss'] print('Average loss: ' + str(average_loss)) brute_results = model.predict( input_fn=lambda: inp(load_submit(), (), 'PREDICT')) net_results = [] for line in brute_results: net_results.append(line['class_ids'][0]) write_to_file(net_results)
def main(argv): (train_x, train_y), (test_x, test_y) = load_data() feature_columns = [ tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity(key='Pclass', num_buckets=4), dimension=3), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female']), dimension=3), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S']), dimension=3), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch') ] model = tf.estimator.Estimator(model_fn=dnn_model_fn, params={ 'feature_columns': feature_columns, 'learning_rate': 0.001, 'optimizer': tf.train.GradientDescentOptimizer, 'hidden_units': [20, 20] }) model.train(input_fn=lambda: inp(train_x, train_y), steps=100)
def main(argv): (train_x, train_y), (test_x, test_y) = load_data() feature_columns = [ tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( key='Pclass', num_buckets=4), dimension=3), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female']), dimension=3), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S']), dimension=3), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch') ] model = tf.estimator.Estimator( model_fn=dnn_model_fn, params={ 'feature_columns': feature_columns, 'learning_rate': 0.001, 'optimizer': tf.train.GradientDescentOptimizer, 'hidden_units': [20, 20] } ) model.train(input_fn=lambda: inp(train_x, train_y), steps=100)
def main(argv): (train_x, train_y), (test_x, test_y) = load_data() feature_columns = [ tf.feature_column.categorical_column_with_identity( key='Pclass', num_buckets=5), tf.feature_column.categorical_column_with_vocabulary_list( key='Sex', vocabulary_list=['male', 'female']), tf.feature_column.numeric_column(key='Age'), tf.feature_column.numeric_column(key='Fare'), tf.feature_column.categorical_column_with_vocabulary_list( key='Embarked', vocabulary_list=['C', 'Q', 'S']), tf.feature_column.numeric_column(key='SibSp'), tf.feature_column.numeric_column(key='Parch') ] optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) model = tf.estimator.LinearClassifier(feature_columns=feature_columns, optimizer=optimizer) model.train(input_fn=lambda: inp(train_x, train_y, 'TRAIN'), steps=30000) eval_result = model.evaluate(input_fn=lambda: inp(test_x, test_y, 'EVAL')) average_loss = eval_result['average_loss'] print('Average loss: ' + str(average_loss)) brute_results = model.predict(input_fn=lambda: inp(load_submit(), (), 'PREDICT')) net_results = [] for line in brute_results: net_results.append(line['class_ids'][0]) write_to_file(net_results)