コード例 #1
0
def main():
    data_train, data_test, stars_train, stars_test = read_lexicon(
        int(sys.argv[1]))
    print("Training size: %d" % len(data_train))

    if "-b" in sys.argv:
        stars_train, stars_test = binary_stars(stars_train, stars_test)

    clf = svm.SVC()
    clf.fit(data_train, stars_train)
    predictions = clf.predict(data_test)
    print("Accuracy: %f\n" % accuracy_score(stars_test, predictions))
コード例 #2
0
def main():

    data_train, data_test, stars_train, stars_test = get_datasets(
        attrs=["latitude", "longitude"])
    print("Training size: %d" % len(data_train))

    knn = neighbors.KNeighborsClassifier(n_neighbors=int(sys.argv[1]))
    if "-b" in sys.argv:
        stars_train, stars_test = binary_stars(stars_train, stars_test)
    knn.fit(data_train, stars_train)
    predictions = knn.predict(data_test)
    print("Accuracy: %f\n" % accuracy_score(stars_test, predictions))
コード例 #3
0
def main():

    data_train, data_test, stars_train, stars_test = get_datasets()
    print("Training size: %d" % len(data_train))

    if "-b" in sys.argv:
        stars_train, stars_test = binary_stars(stars_train, stars_test)

    logreg = linear_model.LogisticRegression()
    logreg.fit(data_train, stars_train)
    predictions = logreg.predict(data_test)
    print("Accuracy: %f\n" % accuracy_score(stars_test, predictions))
    print("Coef for each class and each attribute:\n")
    print(logreg.coef_)
コード例 #4
0
def main():

    types = None
    args = sys.argv
    bi = False
    if "-b" in sys.argv:
        bi = True
        args.remove("-b")
    if len(args) > 1:
        types = sys.argv[1].split(',')
    data_train, data_test, stars_train, stars_test = get_datasets(types=types)
    print("Training size: %d" % len(data_train))

    if bi:
        stars_train, stars_test = binary_stars(stars_train, stars_test)

    clf = svm.SVC()
    clf.fit(data_train, stars_train)
    predictions = clf.predict(data_test)
    print("Accuracy: %f\n" % accuracy_score(stars_test, predictions))
コード例 #5
0
    BINARY_MODE = True
n_classes = 5
NFEAUTRES = 15

def neural_net(data_test, stars_test):
    with tf.Session() as sess:
        new_saver = tf.train.import_meta_graph(META_PATH)
        new_saver.restore(sess, MODEL_PATH)

        graph = tf.get_default_graph()
        x = graph.get_tensor_by_name("x:0")
        y = graph.get_tensor_by_name("y:0")
        op_to_restore = graph.get_tensor_by_name("output_op:0")
        correct = tf.equal(tf.argmax(op_to_restore, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('Test size:', len(stars_test))
        print('Accuracy:',accuracy.eval({x: data_test, y: stars_test}))

def convert_stars_obj(stars):
    return [[1 if (x + 1) == z else 0 for x in range(n_classes)] for z in stars]

data, stars = get_test_routes()
if BINARY_MODE:
    stars, stars_test = binary_stars(stars, stars)
    n_classes = 2
data = np.array(data, dtype=np.float32)
stars = np.array(stars, dtype=np.float32)
stars = convert_stars_obj(stars)

neural_net(data, stars)
コード例 #6
0
        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('Min loss: ', min_loss)
        print('Training size:', len(stars_train))
        print('Test size:', len(stars_test))
        print('Accuracy:', accuracy.eval({x: data_test, y: stars_test}))


def convert_stars_obj(stars):
    return [[1 if (x + 1) == z else 0 for x in range(n_classes)]
            for z in stars]


data_train, data_test, stars_train, stars_test = get_datasets()
if BINARY_MODE:
    stars_train, stars_test = binary_stars(stars_train, stars_test)
    n_classes = 2
y = tf.placeholder('float', [None, n_classes], name="y")  # label of the data
x = tf.placeholder('float', [None, NFEAUTRES], name="x")  #input data

data_train = np.array(data_train, dtype=np.float32)
data_test = np.array(data_test, dtype=np.float32)
stars_train = np.array(stars_train, dtype=np.float32)
stars_test = np.array(stars_test, dtype=np.float32)
stars_test = convert_stars_obj(stars_test)
stars_train = convert_stars_obj(stars_train)

if (batch_size > len(data_train)):
    batch_size = len(data_train)

train_neural_network()