def vidvrd_generator(self): feature_type = 'train' # for each_ins in vid_data.gen_vrd_instance(feature_type): # yield { # "image/encoded": np.array2string(each_ins.get_my_feature(feature_type).ravel()), # "image/format": ["jpeg"], # "image/class/label": [vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]]], # "image/height": [each_ins.height], # "image/width": [each_ins.width] # } ins_list = vid_data.gen_vrd_instance(feature_type) for i in range(3): yield { "image/encoded": np.array2string( ins_list[i].get_my_feature(feature_type).ravel()), "image/format": ["jpeg"], "image/class/label": [ vid_relation.load_relation('first')[ ins_list[i].predicate.split('_')[0]] ], "image/height": [ins_list[i].height], "image/width": [ins_list[i].width] }
def feature_encoders(self, data_dir): del data_dir feature_type = 'train' for each_ins in vid_data.gen_vrd_instance(feature_type): yield { "inputs": each_ins.get_my_feature(feature_type), "targets": vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]] }
def vidvrd_generator(self): feature_type = 'train' for each_ins in vid_data.gen_vrd_instance(feature_type): yield { "image/encoded": np.array2string(each_ins.get_my_feature(feature_type).ravel()), "image/format": ["png"], "image/class/label": [vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]]], "image/height": [each_ins.height], "image/width": [each_ins.width] }
class FrameClass(image_utils.Image2ClassProblem): # feature_path = '../data/VidVRD-features/vid_features' classes_num = len(vid_relation.load_relation('first')) @property def num_generate_tasks(self): return self.classes_num def prepare_to_generate(self, data_dir, tmp_dir): pass def generator(self, data_dir, tmp_dir, is_training): return self.vidvrd_generator() @property def num_channels(self): return 3 @property def is_small(self): return False @property def num_classes(self): return self.classes_num @property def class_labels(self): return vid_relation.load_relation(self.relation_path) @property def train_shards(self): return self.classes_num def feature_encoders(self, data_dir): del data_dir feature_type = 'train' for each_ins in vid_data.gen_vrd_instance(feature_type): yield { "inputs": each_ins.get_my_feature(feature_type), "targets": vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]] } def vidvrd_generator(self): feature_type = 'train' for each_ins in vid_data.gen_vrd_instance(feature_type): yield { "image/encoded": np.array2string(each_ins.get_my_feature(feature_type).ravel()), "image/format": ["png"], "image/class/label": [vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]]], "image/height": [each_ins.height], "image/width": [each_ins.width] }
def class_labels(self): return vid_relation.load_relation(self.relation_path)
"targets": vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]] } def vidvrd_generator(self): feature_type = 'train' for each_ins in vid_data.gen_vrd_instance(feature_type): yield { "image/encoded": np.array2string(each_ins.get_my_feature(feature_type).ravel()), "image/format": ["png"], "image/class/label": [vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]]], "image/height": [each_ins.height], "image/width": [each_ins.width] } # ins_list = vid_data.gen_vrd_instance(feature_type) # for i in range(3): # yield { # "image/encoded": np.array2string(ins_list[i].get_my_feature(feature_type).ravel()), # "image/format": ["png"], # "image/class/label": [vid_relation.load_relation('first')[ins_list[i].predicate.split('_')[0]]], # "image/height": [ins_list[i].height], # "image/width": [ins_list[i].width] # } if __name__ == '__main__': feature_type = 'train' each_ins = vid_data.gen_vrd_instance(feature_type)[0] print(each_ins.get_my_feature(feature_type)) print(vid_relation.load_relation('first')[each_ins.predicate.split('_')[0]])