コード例 #1
0
DIRICHLET = 101  #
#
Lambda = 1.25E10  # Lame coefficient #
Mu = 1.875E10  # Lame coefficient #
#####################################

# Mesh definition:
m = gf.Mesh('regular_simplices', -0.5 + np.arange(nx + 1) / float(nx),
            -0.5 + np.arange(nx + 1) / float(nx))
#m = gf.Mesh('import','gmsh','quad.msh')

# Boundary set:
m.set_region(DIRICHLET, m.outer_faces())

# Global functions for asymptotic enrichment:
ck0 = gf.GlobalFunction('crack', 0)
ck1 = gf.GlobalFunction('crack', 1)
ck2 = gf.GlobalFunction('crack', 2)
ck3 = gf.GlobalFunction('crack', 3)
if variant == 1:  # Cutoff enrichement
    coff = gf.GlobalFunction('cutoff', 2, 0.4, 0.01, 0.4)
    ckoff0 = ck0 * coff  # gf.GlobalFunction('product',ck0,coff)
    ckoff1 = ck1 * coff
    ckoff2 = ck2 * coff
    ckoff3 = ck3 * coff

# Levelset definition:
ls = gf.LevelSet(m, 1, 'y', 'x')

mls = gf.MeshLevelSet(m)
mls.add(ls)
コード例 #2
0
else:
    mf_pre.set_fem(gf.Fem("FEM_PK(2,2)"))

# Definition of the enriched finite element method (MeshFemLevelSet):
mfls = gf.MeshFem("levelset", mls, mf_pre)

# Global functions for asymptotic enrichment:
mf_part_unity = gf.MeshFem(m)
mf_part_unity.set_classical_fem(1)
DOFpts = mf_part_unity.basic_dof_nodes()
ctip_dofs = [
    np.nonzero(np.linalg.norm(DOFpts - x, axis=0) < 0.5)[0]
    for x in [[[xtip], [-ytip]], [[-xtip], [ytip]], [[xtip], [ytip]],
              [[-xtip], [-ytip]]]
]
ck = [gf.GlobalFunction("crack", i) for i in range(4)]
mf_sing = [
    gf.MeshFem("product", mf_part_unity,
               gf.MeshFem("global function", m, ls, ck, 1))
    for ls in [ls1, ls2]
]
mf_sing[0].set_enriched_dofs(np.union1d(ctip_dofs[0], ctip_dofs[1]))
mf_sing[1].set_enriched_dofs(np.union1d(ctip_dofs[2], ctip_dofs[3]))
mf_u = gf.MeshFem("sum", mf_sing[0], mf_sing[1], mfls)
mf_u.set_qdim(2)

mf_theta = gf.MeshFem("sum", mf_sing[0], mf_sing[1], mfls)

# MeshIm definition (MeshImLevelSet):
if (quad):
    mim = gf.MeshIm(
コード例 #3
0
  $Id$
"""
import numpy as np
import getfem as gf
import os

# mesh fem to export
m = gf.Mesh('triangles grid', [-1, -0.5, 0, 0.5, 1], [-1, -0.5, 0, 0.5, 1])
# m = gf.Mesh('import','gmsh','quad.msh')
mf = gf.MeshFem(m)
mf.set_fem(gf.Fem('FEM_PK(2,1)'))
PTs = mf.basic_dof_nodes()

# crack:
ck0 = gf.GlobalFunction('crack', 0)
ck1 = gf.GlobalFunction('crack', 1)
ck2 = gf.GlobalFunction('crack', 2)
ck3 = gf.GlobalFunction('crack', 3)
ck4 = gf.GlobalFunction('crack', 4)
ck5 = gf.GlobalFunction('crack', 5)
ck6 = gf.GlobalFunction('crack', 6)
ck7 = gf.GlobalFunction('crack', 7)
ck8 = gf.GlobalFunction('crack', 8)
ck9 = gf.GlobalFunction('crack', 9)
ck10 = gf.GlobalFunction('crack', 10)
ck11 = gf.GlobalFunction('crack', 11)
mf.export_to_pos('check_global_functions0.pos', ck0(PTs), 'ck0')
mf.export_to_pos('check_global_functions1.pos', ck1(PTs), 'ck1')
mf.export_to_pos('check_global_functions2.pos', ck2(PTs), 'ck2')
mf.export_to_pos('check_global_functions3.pos', ck3(PTs), 'ck3')