def _run(model_file_name, top_example_dir_name, storm_metafile_name, num_examples, output_file_name): """Creates dummy saliency map for each storm object. This is effectively the main method. :param model_file_name: See documentation at top of file. :param top_example_dir_name: Same. :param storm_metafile_name: Same. :param num_examples: Same. :param output_file_name: Same. """ file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) model_metafile_name = '{0:s}/model_metadata.p'.format( os.path.split(model_file_name)[0]) print( 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name)) model_metadata_dict = cnn.read_model_metadata(model_metafile_name) training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY] training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None print( 'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name)) full_storm_id_strings, storm_times_unix_sec = ( tracking_io.read_ids_and_times(storm_metafile_name)) print(SEPARATOR_STRING) if 0 < num_examples < len(full_storm_id_strings): full_storm_id_strings = full_storm_id_strings[:num_examples] storm_times_unix_sec = storm_times_unix_sec[:num_examples] example_dict = testing_io.read_predictors_specific_examples( top_example_dir_name=top_example_dir_name, desired_full_id_strings=full_storm_id_strings, desired_times_unix_sec=storm_times_unix_sec, option_dict=training_option_dict, layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY]) print(SEPARATOR_STRING) predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY] sounding_pressure_matrix_pa = ( example_dict[testing_io.SOUNDING_PRESSURES_KEY]) radar_matrix = predictor_matrices[0] num_examples = radar_matrix.shape[0] num_channels = radar_matrix.shape[-1] num_spatial_dim = len(radar_matrix.shape) - 2 if num_spatial_dim == 2: kernel_matrix = numpy.expand_dims(EDGE_DETECTOR_MATRIX_2D, axis=-1) else: kernel_matrix = numpy.expand_dims(EDGE_DETECTOR_MATRIX_3D, axis=-1) kernel_matrix = numpy.repeat(kernel_matrix, num_channels, axis=-1) kernel_matrix = numpy.expand_dims(kernel_matrix, axis=-1) kernel_matrix = numpy.repeat(kernel_matrix, num_channels, axis=-1) radar_saliency_matrix = numpy.full(radar_matrix.shape, numpy.nan) for i in range(num_examples): if numpy.mod(i, 10) == 0: print(( 'Have created dummy saliency map for {0:d} of {1:d} examples...' ).format(i, num_examples)) if num_spatial_dim == 2: this_saliency_matrix = standalone_utils.do_2d_convolution( feature_matrix=radar_matrix[i, ...], kernel_matrix=kernel_matrix, pad_edges=True, stride_length_px=1) else: this_saliency_matrix = standalone_utils.do_3d_convolution( feature_matrix=radar_matrix[i, ...], kernel_matrix=kernel_matrix, pad_edges=True, stride_length_px=1) radar_saliency_matrix[i, ...] = this_saliency_matrix[0, ...] print('Have created dummy saliency map for all {0:d} examples!'.format( num_examples)) print(SEPARATOR_STRING) saliency_matrices = [ radar_saliency_matrix if k == 0 else predictor_matrices[k] for k in range(len(predictor_matrices)) ] saliency_matrices = trainval_io.separate_shear_and_reflectivity( list_of_input_matrices=saliency_matrices, training_option_dict=training_option_dict) denorm_predictor_matrices = trainval_io.separate_shear_and_reflectivity( list_of_input_matrices=copy.deepcopy(predictor_matrices), training_option_dict=training_option_dict) print('Denormalizing model inputs...') denorm_predictor_matrices = model_interpretation.denormalize_data( list_of_input_matrices=denorm_predictor_matrices, model_metadata_dict=model_metadata_dict) print('Writing saliency maps to file: "{0:s}"...'.format(output_file_name)) saliency_metadata_dict = saliency_maps.check_metadata( component_type_string=model_interpretation.CLASS_COMPONENT_TYPE_STRING, target_class=1) saliency_maps.write_standard_file( pickle_file_name=output_file_name, denorm_predictor_matrices=denorm_predictor_matrices, saliency_matrices=saliency_matrices, full_storm_id_strings=full_storm_id_strings, storm_times_unix_sec=storm_times_unix_sec, model_file_name=model_file_name, metadata_dict=saliency_metadata_dict, sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)
def _run(model_file_name, component_type_string, target_class, layer_name, ideal_activation, neuron_indices, channel_index, top_example_dir_name, storm_metafile_name, num_examples, randomize_weights, cascading_random, output_file_name): """Computes saliency map for each storm object and each model component. This is effectively the main method. :param model_file_name: See documentation at top of file. :param component_type_string: Same. :param target_class: Same. :param layer_name: Same. :param ideal_activation: Same. :param neuron_indices: Same. :param channel_index: Same. :param top_example_dir_name: Same. :param storm_metafile_name: Same. :param num_examples: Same. :param randomize_weights: Same. :param cascading_random: Same. :param output_file_name: Same. """ # Check input args. file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) model_interpretation.check_component_type(component_type_string) # Read model and metadata. print('Reading model from: "{0:s}"...'.format(model_file_name)) model_object = cnn.read_model(model_file_name) model_metafile_name = '{0:s}/model_metadata.p'.format( os.path.split(model_file_name)[0]) print( 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name)) model_metadata_dict = cnn.read_model_metadata(model_metafile_name) training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY] training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None output_dir_name, pathless_output_file_name = os.path.split( output_file_name) extensionless_output_file_name, output_file_extension = os.path.splitext( pathless_output_file_name) if randomize_weights: conv_dense_layer_names = _find_conv_and_dense_layers(model_object) conv_dense_layer_names.reverse() num_sets = len(conv_dense_layer_names) else: conv_dense_layer_names = [] num_sets = 1 print( 'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name)) full_storm_id_strings, storm_times_unix_sec = ( tracking_io.read_ids_and_times(storm_metafile_name)) print(SEPARATOR_STRING) if 0 < num_examples < len(full_storm_id_strings): full_storm_id_strings = full_storm_id_strings[:num_examples] storm_times_unix_sec = storm_times_unix_sec[:num_examples] example_dict = testing_io.read_predictors_specific_examples( top_example_dir_name=top_example_dir_name, desired_full_id_strings=full_storm_id_strings, desired_times_unix_sec=storm_times_unix_sec, option_dict=training_option_dict, layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY]) print(SEPARATOR_STRING) predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY] sounding_pressure_matrix_pa = example_dict[ testing_io.SOUNDING_PRESSURES_KEY] denorm_predictor_matrices = trainval_io.separate_shear_and_reflectivity( list_of_input_matrices=copy.deepcopy(predictor_matrices), training_option_dict=training_option_dict) print('Denormalizing model inputs...') denorm_predictor_matrices = model_interpretation.denormalize_data( list_of_input_matrices=denorm_predictor_matrices, model_metadata_dict=model_metadata_dict) print(SEPARATOR_STRING) for k in range(num_sets): if randomize_weights: if cascading_random: _reset_weights_in_layer(model_object=model_object, layer_name=conv_dense_layer_names[k]) this_model_object = model_object this_output_file_name = ( '{0:s}/{1:s}_cascading-random_{2:s}{3:s}').format( output_dir_name, extensionless_output_file_name, conv_dense_layer_names[k].replace('_', '-'), output_file_extension) else: this_model_object = keras.models.Model.from_config( model_object.get_config()) this_model_object.set_weights(model_object.get_weights()) _reset_weights_in_layer(model_object=this_model_object, layer_name=conv_dense_layer_names[k]) this_output_file_name = '{0:s}/{1:s}_random_{2:s}{3:s}'.format( output_dir_name, extensionless_output_file_name, conv_dense_layer_names[k].replace('_', '-'), output_file_extension) else: this_model_object = model_object this_output_file_name = output_file_name # print(K.eval(this_model_object.get_layer(name='dense_3').weights[0])) if component_type_string == CLASS_COMPONENT_TYPE_STRING: print('Computing saliency maps for target class {0:d}...'.format( target_class)) saliency_matrices = ( saliency_maps.get_saliency_maps_for_class_activation( model_object=this_model_object, target_class=target_class, list_of_input_matrices=predictor_matrices)) elif component_type_string == NEURON_COMPONENT_TYPE_STRING: print( ('Computing saliency maps for neuron {0:s} in layer "{1:s}"...' ).format(str(neuron_indices), layer_name)) saliency_matrices = ( saliency_maps.get_saliency_maps_for_neuron_activation( model_object=this_model_object, layer_name=layer_name, neuron_indices=neuron_indices, list_of_input_matrices=predictor_matrices, ideal_activation=ideal_activation)) else: print(( 'Computing saliency maps for channel {0:d} in layer "{1:s}"...' ).format(channel_index, layer_name)) saliency_matrices = ( saliency_maps.get_saliency_maps_for_channel_activation( model_object=this_model_object, layer_name=layer_name, channel_index=channel_index, list_of_input_matrices=predictor_matrices, stat_function_for_neuron_activations=K.max, ideal_activation=ideal_activation)) saliency_matrices = trainval_io.separate_shear_and_reflectivity( list_of_input_matrices=saliency_matrices, training_option_dict=training_option_dict) print('Writing saliency maps to file: "{0:s}"...'.format( this_output_file_name)) saliency_metadata_dict = saliency_maps.check_metadata( component_type_string=component_type_string, target_class=target_class, layer_name=layer_name, ideal_activation=ideal_activation, neuron_indices=neuron_indices, channel_index=channel_index) saliency_maps.write_standard_file( pickle_file_name=this_output_file_name, denorm_predictor_matrices=denorm_predictor_matrices, saliency_matrices=saliency_matrices, full_storm_id_strings=full_storm_id_strings, storm_times_unix_sec=storm_times_unix_sec, model_file_name=model_file_name, metadata_dict=saliency_metadata_dict, sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)
def check_metadata(component_type_string, num_iterations, learning_rate, target_class=None, layer_name=None, ideal_activation=None, neuron_indices=None, channel_index=None, l2_weight=None, radar_constraint_weight=None, minmax_constraint_weight=None): """Error-checks metadata. :param component_type_string: See doc for `saliency_maps.check_metadata`. :param num_iterations: Number of iterations. :param learning_rate: Learning rate. :param target_class: See doc for `saliency_maps.check_metadata`. :param layer_name: Same. :param ideal_activation: Same. :param neuron_indices: Same. :param channel_index: Same. :param l2_weight: Weight for L_2 regularization. :param radar_constraint_weight: Weight used to multiply part of loss function with radar constraints (see doc for `_radar_constraints_to_loss_fn`). :param minmax_constraint_weight: Weight used to multiply part of loss function with min-max constraints (see doc for `_minmax_constraints_to_loss_fn`). :return: metadata_dict: Dictionary with the following keys. metadata_dict['component_type_string']: See input doc. metadata_dict['num_iterations']: Same. metadata_dict['learning_rate']: Same. metadata_dict['target_class']: Same. metadata_dict['layer_name']: Same. metadata_dict['ideal_activation']: Same. metadata_dict['neuron_indices']: Same. metadata_dict['channel_index']: Same. metadata_dict['l2_weight']: Same. metadata_dict['radar_constraint_weight']: Same. metadata_dict['minmax_constraint_weight']: Same. """ metadata_dict = saliency_maps.check_metadata( component_type_string=component_type_string, target_class=target_class, layer_name=layer_name, ideal_activation=ideal_activation, neuron_indices=neuron_indices, channel_index=channel_index) error_checking.assert_is_integer(num_iterations) error_checking.assert_is_greater(num_iterations, 0) error_checking.assert_is_greater(learning_rate, 0.) error_checking.assert_is_less_than(learning_rate, 1.) if l2_weight is not None: error_checking.assert_is_greater(l2_weight, 0.) if radar_constraint_weight is not None: error_checking.assert_is_greater(radar_constraint_weight, 0.) if minmax_constraint_weight is not None: error_checking.assert_is_greater(minmax_constraint_weight, 0.) metadata_dict.update({ NUM_ITERATIONS_KEY: num_iterations, LEARNING_RATE_KEY: learning_rate, L2_WEIGHT_KEY: l2_weight, RADAR_CONSTRAINT_WEIGHT_KEY: radar_constraint_weight, MINMAX_CONSTRAINT_WEIGHT_KEY: minmax_constraint_weight }) return metadata_dict
def write_file(pickle_file_name, normalized_predictor_matrix, saliency_matrix, model_file_name, component_type_string, target_class=None, layer_name=None, ideal_activation=None, neuron_indices=None, channel_index=None): """Writes saliency maps to Pickle file. E = number of examples M = number of rows in each grid N = number of columns in each grid C = number of channels (predictor variables) :param pickle_file_name: Path to output file. :param normalized_predictor_matrix: E-by-M-by-N-by-C numpy array of normalized predictor values (input images). :param saliency_matrix: E-by-M-by-N-by-C numpy array of saliency values. :param model_file_name: Path to file containing trained CNN on which saliency maps are based. Should be readable by `traditional_cnn.read_keras_model`. :param component_type_string: See doc for `gewittergefahr.deep_learning.saliency_maps.check_metadata`. :param target_class: Same. :param layer_name: Same. :param ideal_activation: Same. :param neuron_indices: Same. :param channel_index: Same. """ gg_saliency.check_metadata(component_type_string=component_type_string, target_class=target_class, layer_name=layer_name, ideal_activation=ideal_activation, neuron_indices=neuron_indices, channel_index=channel_index) error_checking.assert_is_numpy_array_without_nan( normalized_predictor_matrix) error_checking.assert_is_numpy_array(normalized_predictor_matrix, num_dimensions=4) error_checking.assert_is_numpy_array_without_nan(saliency_matrix) error_checking.assert_is_numpy_array( saliency_matrix, exact_dimensions=numpy.array(normalized_predictor_matrix.shape)) error_checking.assert_is_string(model_file_name) metadata_dict = { MODEL_FILE_NAME_KEY: model_file_name, COMPONENT_TYPE_KEY: component_type_string, TARGET_CLASS_KEY: target_class, LAYER_NAME_KEY: layer_name, IDEAL_ACTIVATION_KEY: ideal_activation, NEURON_INDICES_KEY: neuron_indices, CHANNEL_INDEX_KEY: channel_index } file_system_utils.mkdir_recursive_if_necessary(file_name=pickle_file_name) pickle_file_handle = open(pickle_file_name, 'wb') pickle.dump(normalized_predictor_matrix, pickle_file_handle) pickle.dump(saliency_matrix, pickle_file_handle) pickle.dump(metadata_dict, pickle_file_handle) pickle_file_handle.close()
def _run(model_file_name, component_type_string, target_class, layer_name, ideal_activation, neuron_indices, channel_index, top_example_dir_name, storm_metafile_name, num_examples, output_file_name): """Computes saliency map for each storm object and each model component. This is effectively the main method. :param model_file_name: See documentation at top of file. :param component_type_string: Same. :param target_class: Same. :param layer_name: Same. :param ideal_activation: Same. :param neuron_indices: Same. :param channel_index: Same. :param top_example_dir_name: Same. :param storm_metafile_name: Same. :param num_examples: Same. :param output_file_name: Same. """ # Check input args. file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) model_interpretation.check_component_type(component_type_string) # Read model and metadata. print 'Reading model from: "{0:s}"...'.format(model_file_name) model_object = cnn.read_model(model_file_name) model_metafile_name = '{0:s}/model_metadata.p'.format( os.path.split(model_file_name)[0]) print 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name) model_metadata_dict = cnn.read_model_metadata(model_metafile_name) training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY] training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None print 'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name) storm_ids, storm_times_unix_sec = tracking_io.read_ids_and_times( storm_metafile_name) print SEPARATOR_STRING if 0 < num_examples < len(storm_ids): storm_ids = storm_ids[:num_examples] storm_times_unix_sec = storm_times_unix_sec[:num_examples] list_of_input_matrices, sounding_pressure_matrix_pascals = ( testing_io.read_specific_examples( top_example_dir_name=top_example_dir_name, desired_storm_ids=storm_ids, desired_times_unix_sec=storm_times_unix_sec, option_dict=training_option_dict, list_of_layer_operation_dicts=model_metadata_dict[ cnn.LAYER_OPERATIONS_KEY])) print SEPARATOR_STRING if component_type_string == CLASS_COMPONENT_TYPE_STRING: print 'Computing saliency maps for target class {0:d}...'.format( target_class) list_of_saliency_matrices = ( saliency_maps.get_saliency_maps_for_class_activation( model_object=model_object, target_class=target_class, list_of_input_matrices=list_of_input_matrices)) elif component_type_string == NEURON_COMPONENT_TYPE_STRING: print('Computing saliency maps for neuron {0:s} in layer "{1:s}"...' ).format(str(neuron_indices), layer_name) list_of_saliency_matrices = ( saliency_maps.get_saliency_maps_for_neuron_activation( model_object=model_object, layer_name=layer_name, neuron_indices=neuron_indices, list_of_input_matrices=list_of_input_matrices, ideal_activation=ideal_activation)) else: print('Computing saliency maps for channel {0:d} in layer "{1:s}"...' ).format(channel_index, layer_name) list_of_saliency_matrices = ( saliency_maps.get_saliency_maps_for_channel_activation( model_object=model_object, layer_name=layer_name, channel_index=channel_index, list_of_input_matrices=list_of_input_matrices, stat_function_for_neuron_activations=K.max, ideal_activation=ideal_activation)) print 'Denormalizing model inputs...' list_of_input_matrices = model_interpretation.denormalize_data( list_of_input_matrices=list_of_input_matrices, model_metadata_dict=model_metadata_dict) print 'Writing saliency maps to file: "{0:s}"...'.format(output_file_name) saliency_metadata_dict = saliency_maps.check_metadata( component_type_string=component_type_string, target_class=target_class, layer_name=layer_name, ideal_activation=ideal_activation, neuron_indices=neuron_indices, channel_index=channel_index) saliency_maps.write_standard_file( pickle_file_name=output_file_name, list_of_input_matrices=list_of_input_matrices, list_of_saliency_matrices=list_of_saliency_matrices, storm_ids=storm_ids, storm_times_unix_sec=storm_times_unix_sec, model_file_name=model_file_name, saliency_metadata_dict=saliency_metadata_dict, sounding_pressure_matrix_pascals=sounding_pressure_matrix_pascals)