コード例 #1
0
    def test_grid_points_in_poly_to_vertices(self):
        """Ensures correct output from grid_points_in_poly_to_vertices."""

        these_vertex_rows, these_vertex_columns = (
            polygons.grid_points_in_poly_to_vertices(
                ROW_INDICES_IN_POLYGON, COLUMN_INDICES_IN_POLYGON))

        self.assertTrue(
            numpy.array_equal(these_vertex_rows,
                              VERTEX_ROWS_GRID_CELL_EDGES_NON_REDUNDANT))
        self.assertTrue(
            numpy.array_equal(these_vertex_columns,
                              VERTEX_COLUMNS_GRID_CELL_EDGES_NON_REDUNDANT))
コード例 #2
0
for i in range(NUM_STORMS_SMALL_SCALE):
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_utils.
        GRID_POINT_LAT_COLUMN].values[i] = GRID_POINT_LAT_BY_STORM_DEG[i]
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_utils.
        GRID_POINT_LNG_COLUMN].values[i] = GRID_POINT_LNG_BY_STORM_DEG[i]
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_utils.
        GRID_POINT_ROW_COLUMN].values[i] = GRID_POINT_ROWS_BY_STORM[i]
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_utils.
        GRID_POINT_COLUMN_COLUMN].values[i] = GRID_POINT_COLUMNS_BY_STORM[i]

    THESE_VERTEX_ROWS, THESE_VERTEX_COLUMNS = (
        polygons.grid_points_in_poly_to_vertices(
            GRID_POINT_ROWS_BY_STORM[i], GRID_POINT_COLUMNS_BY_STORM[i]))

    THESE_VERTEX_LATITUDES_DEG, THESE_VERTEX_LONGITUDES_DEG = (
        radar_utils.rowcol_to_latlng(
            THESE_VERTEX_ROWS,
            THESE_VERTEX_COLUMNS,
            nw_grid_point_lat_deg=NW_GRID_POINT_LAT_DEG,
            nw_grid_point_lng_deg=NW_GRID_POINT_LNG_DEG,
            lat_spacing_deg=LATITUDE_SPACING_DEG,
            lng_spacing_deg=LONGITUDE_SPACING_DEG))

    (THIS_CENTROID_LAT_DEG,
     THIS_CENTROID_LNG_DEG) = geodetic_utils.get_latlng_centroid(
         latitudes_deg=THESE_VERTEX_LATITUDES_DEG,
         longitudes_deg=THESE_VERTEX_LONGITUDES_DEG)
コード例 #3
0
def read_polygons_from_netcdf(netcdf_file_name,
                              metadata_dict=None,
                              spc_date_unix_sec=None,
                              tracking_start_time_unix_sec=None,
                              tracking_end_time_unix_sec=None,
                              raise_error_if_fails=True):
    """Reads storm polygons (outlines of storm cells) from NetCDF file.

    P = number of grid points in storm cell (different for each storm cell)
    V = number of vertices in storm polygon (different for each storm cell)

    If file cannot be opened, returns None.

    :param netcdf_file_name: Path to input file.
    :param metadata_dict: Dictionary with metadata for NetCDF file, created by
        `radar_io.read_metadata_from_raw_file`.
    :param spc_date_unix_sec: SPC date;
    :param tracking_start_time_unix_sec: Start time for tracking period.  This
        can be found by `get_start_end_times_for_spc_date`.
    :param tracking_end_time_unix_sec: End time for tracking period.  This can
        be found by `get_start_end_times_for_spc_date`.
    :param raise_error_if_fails: Boolean flag.  If True and file cannot be
        opened, this method will raise an error.
    :return: polygon_table: If file cannot be opened and raise_error_if_fails =
        False, this is None.  Otherwise, it is a pandas DataFrame with the
        following columns.
    polygon_table.storm_id: String ID for storm cell.
    polygon_table.unix_time_sec: Time in Unix format.
    polygon_table.spc_date_unix_sec: SPC date in Unix format.
    polygon_table.tracking_start_time_unix_sec: Start time for tracking period.
    polygon_table.tracking_end_time_unix_sec: End time for tracking period.
    polygon_table.centroid_lat_deg: Latitude at centroid of storm cell (deg N).
    polygon_table.centroid_lng_deg: Longitude at centroid of storm cell (deg E).
    polygon_table.grid_point_latitudes_deg: length-P numpy array with latitudes
        (deg N) of grid points in storm cell.
    polygon_table.grid_point_longitudes_deg: length-P numpy array with
        longitudes (deg E) of grid points in storm cell.
    polygon_table.grid_point_rows: length-P numpy array with row indices (all
        integers) of grid points in storm cell.
    polygon_table.grid_point_columns: length-P numpy array with column indices
        (all integers) of grid points in storm cell.
    polygon_table.polygon_object_latlng: Instance of `shapely.geometry.Polygon`
        with vertices in lat-long coordinates.
    polygon_table.polygon_object_rowcol: Instance of `shapely.geometry.Polygon`
        with vertices in row-column coordinates.
    """

    error_checking.assert_file_exists(netcdf_file_name)
    error_checking.assert_is_integer(spc_date_unix_sec)
    error_checking.assert_is_not_nan(spc_date_unix_sec)
    error_checking.assert_is_integer(tracking_start_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_start_time_unix_sec)
    error_checking.assert_is_integer(tracking_end_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_end_time_unix_sec)

    netcdf_dataset = netcdf_io.open_netcdf(netcdf_file_name,
                                           raise_error_if_fails)
    if netcdf_dataset is None:
        return None

    storm_id_var_name = metadata_dict[radar_io.FIELD_NAME_COLUMN]
    storm_id_var_name_orig = metadata_dict[radar_io.FIELD_NAME_COLUMN_ORIG]
    num_values = len(netcdf_dataset.variables[radar_io.GRID_ROW_COLUMN_ORIG])

    if num_values == 0:
        sparse_grid_dict = {
            radar_io.GRID_ROW_COLUMN: numpy.array([], dtype=int),
            radar_io.GRID_COLUMN_COLUMN: numpy.array([], dtype=int),
            radar_io.NUM_GRID_CELL_COLUMN: numpy.array([], dtype=int),
            storm_id_var_name: numpy.array([], dtype=int)
        }
    else:
        sparse_grid_dict = {
            radar_io.GRID_ROW_COLUMN:
            netcdf_dataset.variables[radar_io.GRID_ROW_COLUMN_ORIG][:],
            radar_io.GRID_COLUMN_COLUMN:
            netcdf_dataset.variables[radar_io.GRID_COLUMN_COLUMN_ORIG][:],
            radar_io.NUM_GRID_CELL_COLUMN:
            netcdf_dataset.variables[radar_io.NUM_GRID_CELL_COLUMN_ORIG][:],
            storm_id_var_name:
            netcdf_dataset.variables[storm_id_var_name_orig][:]
        }

    netcdf_dataset.close()
    sparse_grid_table = pandas.DataFrame.from_dict(sparse_grid_dict)
    numeric_storm_id_matrix, _, _ = (radar_s2f.sparse_to_full_grid(
        sparse_grid_table, metadata_dict))
    polygon_table = _storm_id_matrix_to_coord_lists(numeric_storm_id_matrix)

    num_storms = len(polygon_table.index)
    unix_times_sec = numpy.full(num_storms,
                                metadata_dict[radar_io.UNIX_TIME_COLUMN],
                                dtype=int)
    spc_dates_unix_sec = numpy.full(num_storms, spc_date_unix_sec, dtype=int)
    tracking_start_times_unix_sec = numpy.full(num_storms,
                                               tracking_start_time_unix_sec,
                                               dtype=int)
    tracking_end_times_unix_sec = numpy.full(num_storms,
                                             tracking_end_time_unix_sec,
                                             dtype=int)

    spc_date_string = time_conversion.time_to_spc_date_string(
        spc_date_unix_sec)
    storm_ids = _append_spc_date_to_storm_ids(
        polygon_table[tracking_io.STORM_ID_COLUMN].values, spc_date_string)

    simple_array = numpy.full(num_storms, numpy.nan)
    object_array = numpy.full(num_storms, numpy.nan, dtype=object)
    nested_array = polygon_table[[
        tracking_io.STORM_ID_COLUMN, tracking_io.STORM_ID_COLUMN
    ]].values.tolist()

    argument_dict = {
        tracking_io.STORM_ID_COLUMN: storm_ids,
        tracking_io.TIME_COLUMN: unix_times_sec,
        tracking_io.SPC_DATE_COLUMN: spc_dates_unix_sec,
        tracking_io.TRACKING_START_TIME_COLUMN: tracking_start_times_unix_sec,
        tracking_io.TRACKING_END_TIME_COLUMN: tracking_end_times_unix_sec,
        tracking_io.CENTROID_LAT_COLUMN: simple_array,
        tracking_io.CENTROID_LNG_COLUMN: simple_array,
        tracking_io.GRID_POINT_LAT_COLUMN: nested_array,
        tracking_io.GRID_POINT_LNG_COLUMN: nested_array,
        tracking_io.POLYGON_OBJECT_LATLNG_COLUMN: object_array,
        tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN: object_array
    }
    polygon_table = polygon_table.assign(**argument_dict)

    for i in range(num_storms):
        these_vertex_rows, these_vertex_columns = (
            polygons.grid_points_in_poly_to_vertices(
                polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
                polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i]))

        (polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
         polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i]) = (
             polygons.simple_polygon_to_grid_points(these_vertex_rows,
                                                    these_vertex_columns))

        (polygon_table[tracking_io.GRID_POINT_LAT_COLUMN].values[i],
         polygon_table[tracking_io.GRID_POINT_LNG_COLUMN].values[i]) = (
             radar_io.rowcol_to_latlng(
                 polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
                 polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i],
                 nw_grid_point_lat_deg=metadata_dict[
                     radar_io.NW_GRID_POINT_LAT_COLUMN],
                 nw_grid_point_lng_deg=metadata_dict[
                     radar_io.NW_GRID_POINT_LNG_COLUMN],
                 lat_spacing_deg=metadata_dict[radar_io.LAT_SPACING_COLUMN],
                 lng_spacing_deg=metadata_dict[radar_io.LNG_SPACING_COLUMN]))

        these_vertex_lat_deg, these_vertex_lng_deg = radar_io.rowcol_to_latlng(
            these_vertex_rows,
            these_vertex_columns,
            nw_grid_point_lat_deg=metadata_dict[
                radar_io.NW_GRID_POINT_LAT_COLUMN],
            nw_grid_point_lng_deg=metadata_dict[
                radar_io.NW_GRID_POINT_LNG_COLUMN],
            lat_spacing_deg=metadata_dict[radar_io.LAT_SPACING_COLUMN],
            lng_spacing_deg=metadata_dict[radar_io.LNG_SPACING_COLUMN])

        (polygon_table[tracking_io.CENTROID_LAT_COLUMN].values[i],
         polygon_table[tracking_io.CENTROID_LNG_COLUMN].values[i]) = (
             polygons.get_latlng_centroid(these_vertex_lat_deg,
                                          these_vertex_lng_deg))

        polygon_table[tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(these_vertex_columns,
                                                     these_vertex_rows))
        polygon_table[tracking_io.POLYGON_OBJECT_LATLNG_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(these_vertex_lng_deg,
                                                     these_vertex_lat_deg))

    return polygon_table
コード例 #4
0
def read_polygons_from_netcdf(netcdf_file_name,
                              metadata_dict,
                              spc_date_string,
                              tracking_start_time_unix_sec,
                              tracking_end_time_unix_sec,
                              raise_error_if_fails=True):
    """Reads storm polygons (outlines of storm cells) from NetCDF file.

    P = number of grid points in storm cell (different for each storm cell)
    V = number of vertices in storm polygon (different for each storm cell)

    If file cannot be opened, returns None.

    :param netcdf_file_name: Path to input file.
    :param metadata_dict: Dictionary with metadata for NetCDF file, created by
        `myrorss_and_mrms_io.read_metadata_from_raw_file`.
    :param spc_date_string: SPC date (format "yyyymmdd").
    :param tracking_start_time_unix_sec: Start time for tracking period.  This
        can be found by `get_start_end_times_for_spc_date`.
    :param tracking_end_time_unix_sec: End time for tracking period.  This can
        be found by `get_start_end_times_for_spc_date`.
    :param raise_error_if_fails: Boolean flag.  If True and file cannot be
        opened, this method will raise an error.
    :return: polygon_table: pandas DataFrame with the following columns.  Each
        row is one storm object.
    polygon_table.primary_id_string: See documentation for
        `storm_tracking_io.write_file`.
    polygon_table.valid_time_unix_sec: Same.
    polygon_table.spc_date_string: Same.
    polygon_table.tracking_start_time_unix_sec: Same.
    polygon_table.tracking_end_time_unix_sec: Same.
    polygon_table.centroid_latitude_deg: Same.
    polygon_table.centroid_longitude_deg: Same.
    polygon_table.grid_point_latitudes_deg: Same.
    polygon_table.grid_point_longitudes_deg: Same.
    polygon_table.grid_point_rows: Same.
    polygon_table.grid_point_columns: Same.
    polygon_table.polygon_object_latlng_deg: Same.
    polygon_table.polygon_object_rowcol: Same.
    """

    error_checking.assert_file_exists(netcdf_file_name)
    error_checking.assert_is_integer(tracking_start_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_start_time_unix_sec)
    error_checking.assert_is_integer(tracking_end_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_end_time_unix_sec)

    netcdf_dataset = netcdf_io.open_netcdf(netcdf_file_name,
                                           raise_error_if_fails)
    if netcdf_dataset is None:
        return None

    storm_id_column = metadata_dict[radar_utils.FIELD_NAME_COLUMN]
    storm_id_column_orig = metadata_dict[
        myrorss_and_mrms_io.FIELD_NAME_COLUMN_ORIG]
    num_values = len(
        netcdf_dataset.variables[myrorss_and_mrms_io.GRID_ROW_COLUMN_ORIG])

    if num_values == 0:
        sparse_grid_dict = {
            myrorss_and_mrms_io.GRID_ROW_COLUMN: numpy.array([], dtype=int),
            myrorss_and_mrms_io.GRID_COLUMN_COLUMN: numpy.array([], dtype=int),
            myrorss_and_mrms_io.NUM_GRID_CELL_COLUMN: numpy.array([],
                                                                  dtype=int),
            storm_id_column: numpy.array([], dtype=int)
        }
    else:
        sparse_grid_dict = {
            myrorss_and_mrms_io.GRID_ROW_COLUMN:
            netcdf_dataset.variables[myrorss_and_mrms_io.GRID_ROW_COLUMN_ORIG]
            [:],
            myrorss_and_mrms_io.GRID_COLUMN_COLUMN:
            netcdf_dataset.variables[
                myrorss_and_mrms_io.GRID_COLUMN_COLUMN_ORIG][:],
            myrorss_and_mrms_io.NUM_GRID_CELL_COLUMN:
            netcdf_dataset.variables[
                myrorss_and_mrms_io.NUM_GRID_CELL_COLUMN_ORIG][:],
            storm_id_column:
            netcdf_dataset.variables[storm_id_column_orig][:]
        }

    netcdf_dataset.close()

    sparse_grid_table = pandas.DataFrame.from_dict(sparse_grid_dict)
    numeric_id_matrix = radar_s2f.sparse_to_full_grid(sparse_grid_table,
                                                      metadata_dict)[0]

    polygon_table = _id_matrix_to_coord_lists(numeric_id_matrix)
    num_storms = len(polygon_table.index)

    valid_times_unix_sec = numpy.full(
        num_storms, metadata_dict[radar_utils.UNIX_TIME_COLUMN], dtype=int)
    spc_date_strings = num_storms * [
        time_conversion.time_to_spc_date_string(valid_times_unix_sec[0])
    ]

    tracking_start_times_unix_sec = numpy.full(num_storms,
                                               tracking_start_time_unix_sec,
                                               dtype=int)
    tracking_end_times_unix_sec = numpy.full(num_storms,
                                             tracking_end_time_unix_sec,
                                             dtype=int)

    simple_array = numpy.full(num_storms, numpy.nan)
    object_array = numpy.full(num_storms, numpy.nan, dtype=object)
    nested_array = polygon_table[[
        tracking_utils.PRIMARY_ID_COLUMN, tracking_utils.PRIMARY_ID_COLUMN
    ]].values.tolist()

    argument_dict = {
        tracking_utils.VALID_TIME_COLUMN: valid_times_unix_sec,
        tracking_utils.SPC_DATE_COLUMN: spc_date_strings,
        tracking_utils.TRACKING_START_TIME_COLUMN:
        tracking_start_times_unix_sec,
        tracking_utils.TRACKING_END_TIME_COLUMN: tracking_end_times_unix_sec,
        tracking_utils.CENTROID_LATITUDE_COLUMN: simple_array,
        tracking_utils.CENTROID_LONGITUDE_COLUMN: simple_array,
        tracking_utils.LATITUDES_IN_STORM_COLUMN: nested_array,
        tracking_utils.LONGITUDES_IN_STORM_COLUMN: nested_array,
        tracking_utils.LATLNG_POLYGON_COLUMN: object_array,
        tracking_utils.ROWCOL_POLYGON_COLUMN: object_array
    }

    polygon_table = polygon_table.assign(**argument_dict)

    for i in range(num_storms):
        these_vertex_rows, these_vertex_columns = (
            polygons.grid_points_in_poly_to_vertices(
                grid_point_row_indices=polygon_table[
                    tracking_utils.ROWS_IN_STORM_COLUMN].values[i],
                grid_point_column_indices=polygon_table[
                    tracking_utils.COLUMNS_IN_STORM_COLUMN].values[i]))

        (polygon_table[tracking_utils.ROWS_IN_STORM_COLUMN].values[i],
         polygon_table[tracking_utils.COLUMNS_IN_STORM_COLUMN].values[i]
         ) = polygons.simple_polygon_to_grid_points(
             vertex_row_indices=these_vertex_rows,
             vertex_column_indices=these_vertex_columns)

        (polygon_table[tracking_utils.LATITUDES_IN_STORM_COLUMN].values[i],
         polygon_table[tracking_utils.LONGITUDES_IN_STORM_COLUMN].values[i]
         ) = radar_utils.rowcol_to_latlng(
             grid_rows=polygon_table[
                 tracking_utils.ROWS_IN_STORM_COLUMN].values[i],
             grid_columns=polygon_table[
                 tracking_utils.COLUMNS_IN_STORM_COLUMN].values[i],
             nw_grid_point_lat_deg=metadata_dict[
                 radar_utils.NW_GRID_POINT_LAT_COLUMN],
             nw_grid_point_lng_deg=metadata_dict[
                 radar_utils.NW_GRID_POINT_LNG_COLUMN],
             lat_spacing_deg=metadata_dict[radar_utils.LAT_SPACING_COLUMN],
             lng_spacing_deg=metadata_dict[radar_utils.LNG_SPACING_COLUMN])

        these_vertex_lat_deg, these_vertex_lng_deg = (
            radar_utils.rowcol_to_latlng(
                grid_rows=these_vertex_rows,
                grid_columns=these_vertex_columns,
                nw_grid_point_lat_deg=metadata_dict[
                    radar_utils.NW_GRID_POINT_LAT_COLUMN],
                nw_grid_point_lng_deg=metadata_dict[
                    radar_utils.NW_GRID_POINT_LNG_COLUMN],
                lat_spacing_deg=metadata_dict[radar_utils.LAT_SPACING_COLUMN],
                lng_spacing_deg=metadata_dict[radar_utils.LNG_SPACING_COLUMN]))

        (polygon_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[i],
         polygon_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[i]
         ) = geodetic_utils.get_latlng_centroid(
             latitudes_deg=these_vertex_lat_deg,
             longitudes_deg=these_vertex_lng_deg)

        polygon_table[tracking_utils.ROWCOL_POLYGON_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(
                exterior_x_coords=these_vertex_columns,
                exterior_y_coords=these_vertex_rows))

        polygon_table[tracking_utils.LATLNG_POLYGON_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(
                exterior_x_coords=these_vertex_lng_deg,
                exterior_y_coords=these_vertex_lat_deg))

    primary_id_strings = _append_spc_date_to_storm_ids(
        primary_id_strings=polygon_table[
            tracking_utils.PRIMARY_ID_COLUMN].values,
        spc_date_string=spc_date_string)

    return polygon_table.assign(
        **{tracking_utils.PRIMARY_ID_COLUMN: primary_id_strings})