コード例 #1
0
def _plot_locating_variable(
        locating_var_matrix_m01_s01, title_string, annotation_string,
        output_file_name):
    """Plots locating variable.

    M = number of rows in grid
    N = number of columns in grid

    :param locating_var_matrix_m01_s01: M-by-N numpy array with values of
        locating variable.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
    figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits, narr_column_limits, axes_object, basemap_object
    ) = _init_basemap(BORDER_COLOUR)

    matrix_to_plot = locating_var_matrix_m01_s01[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ] * LOCATING_VAR_MULTIPLIER

    max_colour_value = numpy.nanpercentile(
        numpy.absolute(matrix_to_plot), MAX_COLOUR_PERCENTILE)
    min_colour_value = -1 * max_colour_value

    nwp_plotting.plot_subgrid(
        field_matrix=matrix_to_plot,
        model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map=LOCATING_VAR_COLOUR_MAP_OBJECT,
        min_value_in_colour_map=min_colour_value,
        max_value_in_colour_map=max_colour_value,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0])

    plotting_utils.add_linear_colour_bar(
        axes_object_or_list=axes_object,
        values_to_colour=matrix_to_plot,
        colour_map=LOCATING_VAR_COLOUR_MAP_OBJECT, colour_min=min_colour_value,
        colour_max=max_colour_value, orientation='vertical', extend_min=True,
        extend_max=True, fraction_of_axis_length=COLOUR_BAR_LENGTH_FRACTION)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(
        axes_object=axes_object, annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
コード例 #2
0
def _plot_fronts(actual_binary_matrix, predicted_binary_matrix, title_string,
                 annotation_string, output_file_name):
    """Plots actual and predicted fronts.

    M = number of rows in grid
    N = number of columns in grid

    :param actual_binary_matrix: M-by-N numpy array.  If
        actual_binary_matrix[i, j] = 1, there is an actual front passing through
        grid cell [i, j].
    :param predicted_binary_matrix: Same but for predicted fronts.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits,
     narr_column_limits) = nwp_plotting.latlng_limits_to_rowcol_limits(
         min_latitude_deg=MIN_LATITUDE_DEG,
         max_latitude_deg=MAX_LATITUDE_DEG,
         min_longitude_deg=MIN_LONGITUDE_DEG,
         max_longitude_deg=MAX_LONGITUDE_DEG,
         model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1],
        resolution_string='i')

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    this_colour_map_object, this_colour_norm_object = _get_colour_map(True)
    this_matrix = actual_binary_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    nwp_plotting.plot_subgrid(
        field_matrix=this_matrix,
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map=this_colour_map_object,
        min_value_in_colour_map=this_colour_norm_object.boundaries[0],
        max_value_in_colour_map=this_colour_norm_object.boundaries[-1],
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        opacity=ACTUAL_FRONT_OPACITY)

    this_colour_map_object, this_colour_norm_object = _get_colour_map(False)
    this_matrix = predicted_binary_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    nwp_plotting.plot_subgrid(
        field_matrix=this_matrix,
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map=this_colour_map_object,
        min_value_in_colour_map=this_colour_norm_object.boundaries[0],
        max_value_in_colour_map=this_colour_norm_object.boundaries[-1],
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        opacity=PREDICTED_FRONT_OPACITY)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
コード例 #3
0
def _plot_one_time(
        predictor_matrix, predictor_names, front_polyline_table, high_low_table,
        thermal_colour_map_object, max_thermal_prctile_for_colours,
        narr_row_limits, narr_column_limits, title_string, letter_label,
        output_file_name):
    """Plots predictors at one time.

    M = number of rows in grid
    N = number of columns in grid
    C = number of channels (predictors)

    :param predictor_matrix: M-by-N-by-C numpy array of predictor values.
    :param predictor_names: length-C list of predictor names.
    :param front_polyline_table: pandas DataFrame returned by
        `fronts_io.read_polylines_from_file`.
    :param high_low_table: pandas DataFrame returned by
        `wpc_bulletin_io.read_highs_and_lows`.
    :param thermal_colour_map_object: See documentation at top of file.
    :param max_thermal_prctile_for_colours: Same.
    :param narr_row_limits: length-2 numpy array, indicating the first and last
        NARR rows in `predictor_matrix`.  If narr_row_limits = [i, k],
        `predictor_matrix` spans rows i...k of the full NARR grid.
    :param narr_column_limits: Same but for columns.
    :param title_string: Title (will be placed above figure).
    :param letter_label: Letter label.  If this is "a", the label "(a)" will be
        printed at the top left of the figure.
    :param output_file_name: Path to output file (figure will be saved here).
    """

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1]
    )

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lat_deg=-90., upper_right_lat_deg=90.,
        parallel_spacing_deg=PARALLEL_SPACING_DEG
    )
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lng_deg=0., upper_right_lng_deg=360.,
        meridian_spacing_deg=MERIDIAN_SPACING_DEG
    )

    num_predictors = len(predictor_names)
    for j in range(num_predictors):
        if predictor_names[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(
            predictor_matrix[..., j], 100. - max_thermal_prctile_for_colours)
        max_colour_value = numpy.percentile(
            predictor_matrix[..., j], max_thermal_prctile_for_colours)

        nwp_plotting.plot_subgrid(
            field_matrix=predictor_matrix[..., j],
            model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
            basemap_object=basemap_object, colour_map=thermal_colour_map_object,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=narr_row_limits[0],
            first_column_in_full_grid=narr_column_limits[0]
        )

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=predictor_matrix[..., j],
            colour_map=thermal_colour_map_object, colour_min=min_colour_value,
            colour_max=max_colour_value, orientation='horizontal',
            extend_min=True, extend_max=True, fraction_of_axis_length=0.9)

    u_wind_index = predictor_names.index(
        processed_narr_io.U_WIND_GRID_RELATIVE_NAME)
    v_wind_index = predictor_names.index(
        processed_narr_io.V_WIND_GRID_RELATIVE_NAME)

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=predictor_matrix[..., u_wind_index],
        v_wind_matrix_m_s01=predictor_matrix[..., v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object, basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    if high_low_table is None:
        num_pressure_systems = 0
    else:
        num_pressure_systems = len(high_low_table.index)

    for i in range(num_pressure_systems):
        this_system_type_string = high_low_table[
            wpc_bulletin_io.SYSTEM_TYPE_COLUMN].values[i]

        if this_system_type_string == wpc_bulletin_io.HIGH_PRESSURE_STRING:
            this_string = 'H'
        else:
            this_string = 'L'

        this_x_coord_metres, this_y_coord_metres = basemap_object(
            high_low_table[wpc_bulletin_io.LONGITUDE_COLUMN].values[i],
            high_low_table[wpc_bulletin_io.LATITUDE_COLUMN].values[i]
        )

        axes_object.text(
            this_x_coord_metres, this_y_coord_metres, this_string,
            fontsize=PRESSURE_SYSTEM_FONT_SIZE, color=PRESSURE_SYSTEM_COLOUR,
            fontweight='bold', horizontalalignment='center',
            verticalalignment='center')

    num_fronts = len(front_polyline_table.index)

    for i in range(num_fronts):
        this_front_type_string = front_polyline_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]

        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        front_plotting.plot_front_with_markers(
            line_latitudes_deg=front_polyline_table[
                front_utils.LATITUDES_COLUMN].values[i],
            line_longitudes_deg=front_polyline_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            axes_object=axes_object, basemap_object=basemap_object,
            front_type_string=front_polyline_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            marker_colour=this_colour)

    pyplot.title(title_string)

    if letter_label is not None:
        plotting_utils.annotate_axes(
            axes_object=axes_object,
            annotation_string='({0:s})'.format(letter_label)
        )

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
コード例 #4
0
def _run():
    """Plots input example.

    This is effectively the main method.

    :return: figure_file_name: Path to output file (where the figure was saved).
    """

    valid_time_unix_sec = time_conversion.string_to_unix_sec(
        VALID_TIME_STRING, TIME_FORMAT)
    front_file_name = fronts_io.find_file_for_one_time(
        top_directory_name=TOP_FRONT_DIR_NAME,
        file_type=fronts_io.POLYLINE_FILE_TYPE,
        valid_time_unix_sec=valid_time_unix_sec)

    print 'Reading data from: "{0:s}"...'.format(front_file_name)
    front_line_table = fronts_io.read_polylines_from_file(front_file_name)

    num_narr_fields = len(NARR_FIELD_NAMES)
    narr_matrix_by_field = [numpy.array([])] * num_narr_fields

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            this_directory_name = '{0:s}/earth_relative_wind'.format(
                TOP_NARR_DIRECTORY_NAME)
        else:
            this_directory_name = TOP_NARR_DIRECTORY_NAME + ''

        this_file_name = processed_narr_io.find_file_for_one_time(
            top_directory_name=this_directory_name,
            field_name=NARR_FIELD_NAMES[j],
            pressure_level_mb=PRESSURE_LEVEL_MB,
            valid_time_unix_sec=valid_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file(
            this_file_name)[0][0, ...]
        narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j])

        if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME:
            narr_matrix_by_field[j] = (narr_matrix_by_field[j] -
                                       ZERO_CELSIUS_IN_KELVINS)

    # (_, front_centroid_latitude_deg, front_centroid_longitude_deg
    # ) = _find_nearest_front(
    #     front_line_table=front_line_table,
    #     query_latitude_deg=APPROX_FRONT_LATITUDE_DEG,
    #     query_longitude_deg=APPROX_FRONT_LONGITUDE_DEG)

    front_centroid_latitude_deg = APPROX_FRONT_LATITUDE_DEG + 0.
    front_centroid_longitude_deg = APPROX_FRONT_LONGITUDE_DEG + 0.

    projection_object = nwp_model_utils.init_model_projection(
        nwp_model_utils.NARR_MODEL_NAME)
    these_x_metres, these_y_metres = nwp_model_utils.project_latlng_to_xy(
        latitudes_deg=numpy.array([front_centroid_latitude_deg]),
        longitudes_deg=numpy.array([front_centroid_longitude_deg]),
        projection_object=projection_object,
        model_name=nwp_model_utils.NARR_MODEL_NAME)

    front_centroid_x_metres = these_x_metres[0]
    front_centroid_y_metres = these_y_metres[0]

    grid_spacing_metres, _ = nwp_model_utils.get_xy_grid_spacing(
        model_name=nwp_model_utils.NARR_MODEL_NAME)
    center_narr_row_index = int(
        numpy.round(front_centroid_y_metres / grid_spacing_metres))
    center_narr_column_index = int(
        numpy.round(front_centroid_x_metres / grid_spacing_metres))

    first_narr_row_index = center_narr_row_index - NUM_ROWS_IN_HALF_GRID
    last_narr_row_index = center_narr_row_index + NUM_ROWS_IN_HALF_GRID
    first_narr_column_index = (center_narr_column_index -
                               NUM_COLUMNS_IN_HALF_GRID)
    last_narr_column_index = center_narr_column_index + NUM_COLUMNS_IN_HALF_GRID

    for j in range(num_narr_fields):
        narr_matrix_by_field[j] = narr_matrix_by_field[j][
            first_narr_row_index:(last_narr_row_index + 1),
            first_narr_column_index:(last_narr_column_index + 1)]

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=first_narr_row_index,
        last_row_in_full_grid=last_narr_row_index,
        first_column_in_full_grid=first_narr_column_index,
        last_column_in_full_grid=last_narr_column_index,
        resolution_string='i')

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MIN_COLOUR_PERCENTILE)
        max_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MAX_COLOUR_PERCENTILE)

        nwp_plotting.plot_subgrid(
            field_matrix=narr_matrix_by_field[j],
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            axes_object=axes_object,
            basemap_object=basemap_object,
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=first_narr_row_index,
            first_column_in_full_grid=first_narr_column_index)

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=narr_matrix_by_field[j],
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            colour_min=min_colour_value,
            colour_max=max_colour_value,
            orientation='horizontal',
            extend_min=True,
            extend_max=True)

    u_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.U_WIND_EARTH_RELATIVE_NAME)
    v_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.V_WIND_EARTH_RELATIVE_NAME)

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index],
        v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=first_narr_row_index,
        first_column_in_full_grid=first_narr_column_index,
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH,
        empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    num_fronts = len(front_line_table.index)
    for i in range(num_fronts):
        this_front_type_string = front_line_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]
        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        # front_plotting.plot_polyline(
        #     latitudes_deg=front_line_table[
        #         front_utils.LATITUDES_COLUMN].values[i],
        #     longitudes_deg=front_line_table[
        #         front_utils.LONGITUDES_COLUMN].values[i],
        #     basemap_object=basemap_object, axes_object=axes_object,
        #     front_type=front_line_table[
        #         front_utils.FRONT_TYPE_COLUMN].values[i],
        #     line_width=FRONT_LINE_WIDTH, line_colour=this_colour)

    print 'Saving figure to: "{0:s}"...'.format(OUTPUT_FILE_NAME)
    file_system_utils.mkdir_recursive_if_necessary(file_name=OUTPUT_FILE_NAME)
    pyplot.savefig(OUTPUT_FILE_NAME, dpi=OUTPUT_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=OUTPUT_FILE_NAME,
                                      output_file_name=OUTPUT_FILE_NAME)
コード例 #5
0
def _plot_narr_fields(
        wet_bulb_theta_matrix_kelvins, u_wind_matrix_m_s01, v_wind_matrix_m_s01,
        title_string, annotation_string, output_file_name):
    """Plots NARR fields.

    M = number of rows in grid
    N = number of columns in grid

    :param wet_bulb_theta_matrix_kelvins: M-by-N numpy array of wet-bulb
        potential temperatures.
    :param u_wind_matrix_m_s01: M-by-N numpy array of u-wind components (metres
        per second).
    :param v_wind_matrix_m_s01: Same but for v-wind.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits, narr_column_limits, axes_object, basemap_object
    ) = _init_basemap(BORDER_COLOUR)

    wet_bulb_theta_matrix_to_plot = wet_bulb_theta_matrix_kelvins[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ] - ZERO_CELSIUS_IN_KELVINS
    u_wind_matrix_to_plot = u_wind_matrix_m_s01[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ]
    v_wind_matrix_to_plot = v_wind_matrix_m_s01[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ]

    nwp_plotting.plot_subgrid(
        field_matrix=wet_bulb_theta_matrix_to_plot,
        model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
        basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT,
        min_value_in_colour_map=numpy.nanpercentile(
            wet_bulb_theta_matrix_to_plot, MIN_COLOUR_PERCENTILE),
        max_value_in_colour_map=numpy.nanpercentile(
            wet_bulb_theta_matrix_to_plot, MAX_COLOUR_PERCENTILE),
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0])

    plotting_utils.add_linear_colour_bar(
        axes_object_or_list=axes_object,
        values_to_colour=wet_bulb_theta_matrix_to_plot,
        colour_map=THERMAL_COLOUR_MAP_OBJECT,
        colour_min=numpy.nanpercentile(
            wet_bulb_theta_matrix_to_plot, MIN_COLOUR_PERCENTILE),
        colour_max=numpy.nanpercentile(
            wet_bulb_theta_matrix_to_plot, MAX_COLOUR_PERCENTILE),
        orientation='vertical', extend_min=True, extend_max=True,
        fraction_of_axis_length=COLOUR_BAR_LENGTH_FRACTION)

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=u_wind_matrix_to_plot,
        v_wind_matrix_m_s01=v_wind_matrix_to_plot,
        model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(
        axes_object=axes_object, annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
コード例 #6
0
def _plot_one_time(valid_time_string, pressure_level_mb, title_string,
                   annotation_string, narr_rotation_cos_matrix,
                   narr_rotation_sin_matrix):
    """Plots WPC fronts and NARR fields at one time.

    M = number of grid rows in the full NARR
    N = number of grid columns in the full NARR

    :param valid_time_string: Valid time (format "yyyy-mm-dd-HH").
    :param pressure_level_mb: Pressure level (millibars).
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Annotation (will be placed above and left of
        figure).
    :param narr_rotation_cos_matrix: M-by-N numpy array of cosines for wind-
        rotation angles.
    :param narr_rotation_sin_matrix: M-by-N numpy array of sines for wind-
        rotation angles.
    """

    narr_row_limits, narr_column_limits = (
        nwp_plotting.latlng_limits_to_rowcol_limits(
            min_latitude_deg=MIN_LATITUDE_DEG,
            max_latitude_deg=MAX_LATITUDE_DEG,
            min_longitude_deg=MIN_LONGITUDE_DEG,
            max_longitude_deg=MAX_LONGITUDE_DEG,
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    valid_time_unix_sec = time_conversion.string_to_unix_sec(
        valid_time_string, DEFAULT_TIME_FORMAT)

    front_file_name = fronts_io.find_file_for_one_time(
        top_directory_name=TOP_FRONT_DIR_NAME,
        file_type=fronts_io.POLYLINE_FILE_TYPE,
        valid_time_unix_sec=valid_time_unix_sec)

    print 'Reading data from: "{0:s}"...'.format(front_file_name)
    front_line_table = fronts_io.read_polylines_from_file(front_file_name)

    num_narr_fields = len(NARR_FIELD_NAMES)
    narr_matrix_by_field = [numpy.array([])] * num_narr_fields

    for j in range(num_narr_fields):
        this_file_name = processed_narr_io.find_file_for_one_time(
            top_directory_name=TOP_NARR_DIRECTORY_NAME,
            field_name=NARR_FIELD_NAMES[j],
            pressure_level_mb=pressure_level_mb,
            valid_time_unix_sec=valid_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file(
            this_file_name)[0][0, ...]

        narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j])
        narr_matrix_by_field[j] = narr_matrix_by_field[j][narr_row_limits[0]:(
            narr_row_limits[1] +
            1), narr_column_limits[0]:(narr_column_limits[1] + 1)]

        if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME:
            narr_matrix_by_field[j] = (narr_matrix_by_field[j] -
                                       ZERO_CELSIUS_IN_KELVINS)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MIN_COLOUR_PERCENTILE)
        max_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MAX_COLOUR_PERCENTILE)

        nwp_plotting.plot_subgrid(
            field_matrix=narr_matrix_by_field[j],
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            axes_object=axes_object,
            basemap_object=basemap_object,
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=narr_row_limits[0],
            first_column_in_full_grid=narr_column_limits[0])

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=narr_matrix_by_field[j],
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            colour_min=min_colour_value,
            colour_max=max_colour_value,
            orientation='horizontal',
            extend_min=True,
            extend_max=True,
            fraction_of_axis_length=0.9)

    this_cos_matrix = narr_rotation_cos_matrix[narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]

    this_sin_matrix = narr_rotation_sin_matrix[narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]

    u_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.U_WIND_GRID_RELATIVE_NAME)
    v_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.V_WIND_GRID_RELATIVE_NAME)

    narr_matrix_by_field[u_wind_index], narr_matrix_by_field[v_wind_index] = (
        nwp_model_utils.rotate_winds_to_earth_relative(
            u_winds_grid_relative_m_s01=narr_matrix_by_field[u_wind_index],
            v_winds_grid_relative_m_s01=narr_matrix_by_field[v_wind_index],
            rotation_angle_cosines=this_cos_matrix,
            rotation_angle_sines=this_sin_matrix))

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index],
        v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH,
        empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=False,
        colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    num_fronts = len(front_line_table.index)

    for i in range(num_fronts):
        this_front_type_string = front_line_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]

        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        front_plotting.plot_front_with_markers(
            line_latitudes_deg=front_line_table[
                front_utils.LATITUDES_COLUMN].values[i],
            line_longitudes_deg=front_line_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            axes_object=axes_object,
            basemap_object=basemap_object,
            front_type_string=front_line_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            marker_colour=this_colour)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=OUTPUT_DIR_NAME)
    figure_file_name = '{0:s}/fronts_{1:04d}mb_{2:s}.jpg'.format(
        OUTPUT_DIR_NAME, pressure_level_mb, valid_time_string)

    print 'Saving figure to: "{0:s}"...'.format(figure_file_name)
    pyplot.savefig(figure_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=figure_file_name,
                                      output_file_name=figure_file_name)
    return figure_file_name
コード例 #7
0
def _plot_observations_one_time(
        valid_time_string, title_string, annotation_string, output_file_name):
    """Plots observations (NARR predictors and WPC fronts) for one valid time.

    :param valid_time_string: Valid time (format "yyyy-mm-dd-HH").
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits, narr_column_limits
    ) = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG,
        min_longitude_deg=MIN_LONGITUDE_DEG,
        max_longitude_deg=MAX_LONGITUDE_DEG,
        model_name=nwp_model_utils.NARR_MODEL_NAME)

    valid_time_unix_sec = time_conversion.string_to_unix_sec(
        valid_time_string, INPUT_TIME_FORMAT)
    front_file_name = fronts_io.find_file_for_one_time(
        top_directory_name=TOP_FRONT_DIR_NAME,
        file_type=fronts_io.POLYLINE_FILE_TYPE,
        valid_time_unix_sec=valid_time_unix_sec)

    print 'Reading data from: "{0:s}"...'.format(front_file_name)
    front_line_table = fronts_io.read_polylines_from_file(front_file_name)

    num_narr_fields = len(NARR_FIELD_NAMES)
    narr_matrix_by_field = [numpy.array([])] * num_narr_fields

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            this_directory_name = TOP_NARR_WIND_DIR_NAME + ''
        else:
            this_directory_name = TOP_NARR_DIR_NAME + ''

        this_file_name = processed_narr_io.find_file_for_one_time(
            top_directory_name=this_directory_name,
            field_name=NARR_FIELD_NAMES[j], pressure_level_mb=PRESSURE_LEVEL_MB,
            valid_time_unix_sec=valid_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file(
            this_file_name)[0][0, ...]

        narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j])
        narr_matrix_by_field[j] = narr_matrix_by_field[j][
            narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1)
        ]

        if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME:
            narr_matrix_by_field[j] = (
                narr_matrix_by_field[j] - ZERO_CELSIUS_IN_KELVINS
            )

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lat_deg=-90., upper_right_lat_deg=90.,
        parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lng_deg=0., upper_right_lng_deg=360.,
        meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(
            narr_matrix_by_field[j], MIN_COLOUR_PERCENTILE)
        max_colour_value = numpy.percentile(
            narr_matrix_by_field[j], MAX_COLOUR_PERCENTILE)

        nwp_plotting.plot_subgrid(
            field_matrix=narr_matrix_by_field[j],
            model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
            basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=narr_row_limits[0],
            first_column_in_full_grid=narr_column_limits[0])

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=narr_matrix_by_field[j],
            colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=min_colour_value,
            colour_max=max_colour_value, orientation='vertical',
            extend_min=True, extend_max=True,
            fraction_of_axis_length=LENGTH_FRACTION_FOR_THETA_COLOUR_BAR)

    u_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.U_WIND_EARTH_RELATIVE_NAME)
    v_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.V_WIND_EARTH_RELATIVE_NAME)

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index],
        v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    num_fronts = len(front_line_table.index)
    for i in range(num_fronts):
        this_front_type_string = front_line_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]
        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        front_plotting.plot_polyline(
            latitudes_deg=front_line_table[
                front_utils.LATITUDES_COLUMN].values[i],
            longitudes_deg=front_line_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            basemap_object=basemap_object, axes_object=axes_object,
            front_type=front_line_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            line_width=FRONT_LINE_WIDTH, line_colour=this_colour)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(
        axes_object=axes_object, annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
コード例 #8
0
def _run(example_file_name, top_front_line_dir_name, num_examples,
         example_indices, thetaw_colour_map_name, thetaw_max_colour_percentile,
         output_dir_name):
    """Plots one or more input examples.

    This is effectively the main method.

    :param example_file_name: See documentation at top of file.
    :param top_front_line_dir_name: Same.
    :param num_examples: Same.
    :param example_indices: Same.
    :param thetaw_colour_map_name: Same.
    :param thetaw_max_colour_percentile: Same.
    :param output_dir_name: Same.
    """

    if num_examples <= 0:
        num_examples = None

    if num_examples is None:
        error_checking.assert_is_geq_numpy_array(example_indices, 0)
    else:
        error_checking.assert_is_greater(num_examples, 0)

    error_checking.assert_is_geq(thetaw_max_colour_percentile, 0)
    error_checking.assert_is_leq(thetaw_max_colour_percentile, 100)
    thetaw_colour_map_object = pyplot.cm.get_cmap(thetaw_colour_map_name)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name)

    print 'Reading normalized examples from: "{0:s}"...'.format(
        example_file_name)

    example_dict = trainval_io.read_downsized_3d_examples(
        netcdf_file_name=example_file_name,
        num_half_rows_to_keep=NUM_HALF_ROWS,
        num_half_columns_to_keep=NUM_HALF_COLUMNS,
        predictor_names_to_keep=NARR_PREDICTOR_NAMES)

    # TODO(thunderhoser): This is a HACK (assuming that normalization method is
    # z-score and not min-max).
    mean_value_matrix = example_dict[trainval_io.FIRST_NORM_PARAM_KEY]
    standard_deviation_matrix = example_dict[trainval_io.SECOND_NORM_PARAM_KEY]

    normalization_dict = {
        ml_utils.MIN_VALUE_MATRIX_KEY: None,
        ml_utils.MAX_VALUE_MATRIX_KEY: None,
        ml_utils.MEAN_VALUE_MATRIX_KEY: mean_value_matrix,
        ml_utils.STDEV_MATRIX_KEY: standard_deviation_matrix
    }

    example_dict[trainval_io.PREDICTOR_MATRIX_KEY] = (
        ml_utils.denormalize_predictors(
            predictor_matrix=example_dict[trainval_io.PREDICTOR_MATRIX_KEY],
            normalization_dict=normalization_dict))

    narr_latitude_matrix_deg, narr_longitude_matrix_deg = (
        nwp_model_utils.get_latlng_grid_point_matrices(
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    narr_rotation_cos_matrix, narr_rotation_sin_matrix = (
        nwp_model_utils.get_wind_rotation_angles(
            latitudes_deg=narr_latitude_matrix_deg,
            longitudes_deg=narr_longitude_matrix_deg,
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    num_examples_total = len(example_dict[trainval_io.TARGET_TIMES_KEY])
    example_indices = numpy.linspace(0,
                                     num_examples_total - 1,
                                     num=num_examples_total,
                                     dtype=int)

    if num_examples is not None:
        num_examples = min([num_examples, num_examples_total])
        example_indices = numpy.random.choice(example_indices,
                                              size=num_examples,
                                              replace=False)

    thetaw_index = NARR_PREDICTOR_NAMES.index(
        processed_narr_io.WET_BULB_THETA_NAME)
    u_wind_index = NARR_PREDICTOR_NAMES.index(
        processed_narr_io.U_WIND_GRID_RELATIVE_NAME)
    v_wind_index = NARR_PREDICTOR_NAMES.index(
        processed_narr_io.V_WIND_GRID_RELATIVE_NAME)

    for i in example_indices:
        this_center_row_index = example_dict[trainval_io.ROW_INDICES_KEY][i]
        this_first_row_index = this_center_row_index - NUM_HALF_ROWS
        this_last_row_index = this_center_row_index + NUM_HALF_ROWS

        this_center_column_index = example_dict[
            trainval_io.COLUMN_INDICES_KEY][i]
        this_first_column_index = this_center_column_index - NUM_HALF_COLUMNS
        this_last_column_index = this_center_column_index + NUM_HALF_COLUMNS

        this_u_wind_matrix_m_s01 = example_dict[
            trainval_io.PREDICTOR_MATRIX_KEY][i, ..., u_wind_index]
        this_v_wind_matrix_m_s01 = example_dict[
            trainval_io.PREDICTOR_MATRIX_KEY][i, ..., v_wind_index]
        this_cos_matrix = narr_rotation_cos_matrix[this_first_row_index:(
            this_last_row_index +
            1), this_first_column_index:(this_last_column_index + 1)]
        this_sin_matrix = narr_rotation_sin_matrix[this_first_row_index:(
            this_last_row_index +
            1), this_first_column_index:(this_last_column_index + 1)]

        this_u_wind_matrix_m_s01, this_v_wind_matrix_m_s01 = (
            nwp_model_utils.rotate_winds_to_earth_relative(
                u_winds_grid_relative_m_s01=this_u_wind_matrix_m_s01,
                v_winds_grid_relative_m_s01=this_v_wind_matrix_m_s01,
                rotation_angle_cosines=this_cos_matrix,
                rotation_angle_sines=this_sin_matrix))

        _, axes_object, basemap_object = nwp_plotting.init_basemap(
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            first_row_in_full_grid=this_first_row_index,
            last_row_in_full_grid=this_last_row_index,
            first_column_in_full_grid=this_first_column_index,
            last_column_in_full_grid=this_last_column_index,
            resolution_string='i')

        plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                       axes_object=axes_object,
                                       line_colour=BORDER_COLOUR,
                                       line_width=BORDER_WIDTH)
        plotting_utils.plot_countries(basemap_object=basemap_object,
                                      axes_object=axes_object,
                                      line_colour=BORDER_COLOUR,
                                      line_width=BORDER_WIDTH)
        plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                                 axes_object=axes_object,
                                                 line_colour=BORDER_COLOUR,
                                                 line_width=BORDER_WIDTH)
        plotting_utils.plot_parallels(
            basemap_object=basemap_object,
            axes_object=axes_object,
            bottom_left_lat_deg=-90.,
            upper_right_lat_deg=90.,
            parallel_spacing_deg=PARALLEL_SPACING_DEG)
        plotting_utils.plot_meridians(
            basemap_object=basemap_object,
            axes_object=axes_object,
            bottom_left_lng_deg=0.,
            upper_right_lng_deg=360.,
            meridian_spacing_deg=MERIDIAN_SPACING_DEG)

        this_thetaw_matrix_kelvins = example_dict[
            trainval_io.PREDICTOR_MATRIX_KEY][i, ..., thetaw_index]

        this_min_value = numpy.percentile(this_thetaw_matrix_kelvins,
                                          100. - thetaw_max_colour_percentile)
        this_max_value = numpy.percentile(this_thetaw_matrix_kelvins,
                                          thetaw_max_colour_percentile)

        nwp_plotting.plot_subgrid(
            field_matrix=this_thetaw_matrix_kelvins,
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            axes_object=axes_object,
            basemap_object=basemap_object,
            colour_map=thetaw_colour_map_object,
            min_value_in_colour_map=this_min_value,
            max_value_in_colour_map=this_max_value,
            first_row_in_full_grid=this_first_row_index,
            first_column_in_full_grid=this_first_column_index)

        colour_bar_object = plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=this_thetaw_matrix_kelvins,
            colour_map=thetaw_colour_map_object,
            colour_min=this_min_value,
            colour_max=this_max_value,
            orientation='vertical',
            extend_min=True,
            extend_max=True,
            fraction_of_axis_length=0.8)

        colour_bar_object.set_label(
            r'Wet-bulb potential temperature ($^{\circ}$C)')

        nwp_plotting.plot_wind_barbs_on_subgrid(
            u_wind_matrix_m_s01=this_u_wind_matrix_m_s01,
            v_wind_matrix_m_s01=this_v_wind_matrix_m_s01,
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            axes_object=axes_object,
            basemap_object=basemap_object,
            first_row_in_full_grid=this_first_row_index,
            first_column_in_full_grid=this_first_column_index,
            barb_length=WIND_BARB_LENGTH,
            empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
            fill_empty_barb=False,
            colour_map=WIND_COLOUR_MAP_OBJECT,
            colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
            colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

        this_front_file_name = fronts_io.find_file_for_one_time(
            top_directory_name=top_front_line_dir_name,
            file_type=fronts_io.POLYLINE_FILE_TYPE,
            valid_time_unix_sec=example_dict[trainval_io.TARGET_TIMES_KEY][i])

        print time_conversion.unix_sec_to_string(
            example_dict[trainval_io.TARGET_TIMES_KEY][i], '%Y-%m-%d-%H')

        this_polyline_table = fronts_io.read_polylines_from_file(
            this_front_file_name)
        this_num_fronts = len(this_polyline_table.index)

        for j in range(this_num_fronts):
            this_front_type_string = this_polyline_table[
                front_utils.FRONT_TYPE_COLUMN].values[j]

            if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
                this_colour = WARM_FRONT_COLOUR
            else:
                this_colour = COLD_FRONT_COLOUR

            front_plotting.plot_front_with_markers(
                line_latitudes_deg=this_polyline_table[
                    front_utils.LATITUDES_COLUMN].values[j],
                line_longitudes_deg=this_polyline_table[
                    front_utils.LONGITUDES_COLUMN].values[j],
                axes_object=axes_object,
                basemap_object=basemap_object,
                front_type_string=this_polyline_table[
                    front_utils.FRONT_TYPE_COLUMN].values[j],
                marker_colour=this_colour,
                marker_size=FRONT_MARKER_SIZE,
                marker_spacing_metres=FRONT_SPACING_METRES)

        this_output_file_name = '{0:s}/example{1:06d}.jpg'.format(
            output_dir_name, i)

        print 'Saving figure to: "{0:s}"...'.format(this_output_file_name)
        pyplot.savefig(this_output_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()
コード例 #9
0
def _plot_rapruc_one_example(
        full_storm_id_string, storm_time_unix_sec, top_tracking_dir_name,
        latitude_buffer_deg, longitude_buffer_deg, lead_time_seconds,
        field_name_grib1, output_dir_name, rap_file_name=None,
        ruc_file_name=None):
    """Plots RAP or RUC field for one example.

    :param full_storm_id_string: Full storm ID.
    :param storm_time_unix_sec: Valid time.
    :param top_tracking_dir_name: See documentation at top of file.
    :param latitude_buffer_deg: Same.
    :param longitude_buffer_deg: Same.
    :param lead_time_seconds: Same.
    :param field_name_grib1: Same.
    :param output_dir_name: Same.
    :param rap_file_name: Path to file with RAP analysis.
    :param ruc_file_name: [used only if `rap_file_name is None`]
        Path to file with RUC analysis.
    """

    tracking_file_name = tracking_io.find_file(
        top_tracking_dir_name=top_tracking_dir_name,
        tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2,
        source_name=tracking_utils.SEGMOTION_NAME,
        valid_time_unix_sec=storm_time_unix_sec,
        spc_date_string=
        time_conversion.time_to_spc_date_string(storm_time_unix_sec),
        raise_error_if_missing=True
    )

    print('Reading data from: "{0:s}"...'.format(tracking_file_name))
    storm_object_table = tracking_io.read_file(tracking_file_name)
    storm_object_table = storm_object_table.loc[
        storm_object_table[tracking_utils.FULL_ID_COLUMN] ==
        full_storm_id_string
    ]

    extrap_times_sec = numpy.array([0, lead_time_seconds], dtype=int)
    storm_object_table = soundings._create_target_points_for_interp(
        storm_object_table=storm_object_table,
        lead_times_seconds=extrap_times_sec
    )

    orig_latitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[0]
    )
    orig_longitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[0]
    )
    extrap_latitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[1]
    )
    extrap_longitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[1]
    )

    if rap_file_name is None:
        grib_file_name = ruc_file_name
        model_name = nwp_model_utils.RUC_MODEL_NAME
    else:
        grib_file_name = rap_file_name
        model_name = nwp_model_utils.RAP_MODEL_NAME

    pathless_grib_file_name = os.path.split(grib_file_name)[-1]
    grid_name = pathless_grib_file_name.split('_')[1]

    host_name = socket.gethostname()

    if 'casper' in host_name:
        wgrib_exe_name = '/glade/work/ryanlage/wgrib/wgrib'
        wgrib2_exe_name = '/glade/work/ryanlage/wgrib2/wgrib2/wgrib2'
    else:
        wgrib_exe_name = '/condo/swatwork/ralager/wgrib/wgrib'
        wgrib2_exe_name = '/condo/swatwork/ralager/grib2/wgrib2/wgrib2'

    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        field_name_grib1, grib_file_name
    ))
    main_field_matrix = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=field_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    u_wind_name_grib1 = 'UGRD:{0:s}'.format(
        field_name_grib1.split(':')[-1]
    )
    u_wind_name_grib1 = u_wind_name_grib1.replace('2 m', '10 m')
    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        u_wind_name_grib1, grib_file_name
    ))
    u_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=u_wind_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    v_wind_name_grib1 = 'VGRD:{0:s}'.format(
        u_wind_name_grib1.split(':')[-1]
    )
    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        v_wind_name_grib1, grib_file_name
    ))
    v_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=v_wind_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    latitude_matrix_deg, longitude_matrix_deg = (
        nwp_model_utils.get_latlng_grid_point_matrices(
            model_name=model_name, grid_name=grid_name)
    )
    cosine_matrix, sine_matrix = nwp_model_utils.get_wind_rotation_angles(
        latitudes_deg=latitude_matrix_deg, longitudes_deg=longitude_matrix_deg,
        model_name=model_name
    )
    u_wind_matrix_m_s01, v_wind_matrix_m_s01 = (
        nwp_model_utils.rotate_winds_to_earth_relative(
            u_winds_grid_relative_m_s01=u_wind_matrix_m_s01,
            v_winds_grid_relative_m_s01=v_wind_matrix_m_s01,
            rotation_angle_cosines=cosine_matrix,
            rotation_angle_sines=sine_matrix)
    )

    min_plot_latitude_deg = (
        min([orig_latitude_deg, extrap_latitude_deg]) - latitude_buffer_deg
    )
    max_plot_latitude_deg = (
        max([orig_latitude_deg, extrap_latitude_deg]) + latitude_buffer_deg
    )
    min_plot_longitude_deg = (
        min([orig_longitude_deg, extrap_longitude_deg]) - longitude_buffer_deg
    )
    max_plot_longitude_deg = (
        max([orig_longitude_deg, extrap_longitude_deg]) + longitude_buffer_deg
    )

    row_limits, column_limits = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=min_plot_latitude_deg,
        max_latitude_deg=max_plot_latitude_deg,
        min_longitude_deg=min_plot_longitude_deg,
        max_longitude_deg=max_plot_longitude_deg,
        model_name=model_name, grid_id=grid_name
    )

    main_field_matrix = main_field_matrix[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]
    u_wind_matrix_m_s01 = u_wind_matrix_m_s01[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]
    v_wind_matrix_m_s01 = v_wind_matrix_m_s01[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=model_name, grid_id=grid_name,
        first_row_in_full_grid=row_limits[0],
        last_row_in_full_grid=row_limits[1],
        first_column_in_full_grid=column_limits[0],
        last_column_in_full_grid=column_limits[1]
    )

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        num_parallels=NUM_PARALLELS
    )
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        num_meridians=NUM_MERIDIANS
    )

    min_colour_value = numpy.nanpercentile(
        main_field_matrix, 100. - MAX_COLOUR_PERCENTILE
    )
    max_colour_value = numpy.nanpercentile(
        main_field_matrix, MAX_COLOUR_PERCENTILE
    )

    nwp_plotting.plot_subgrid(
        field_matrix=main_field_matrix,
        model_name=model_name, grid_id=grid_name,
        axes_object=axes_object, basemap_object=basemap_object,
        colour_map_object=COLOUR_MAP_OBJECT, min_colour_value=min_colour_value,
        max_colour_value=max_colour_value,
        first_row_in_full_grid=row_limits[0],
        first_column_in_full_grid=column_limits[0]
    )

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=u_wind_matrix_m_s01,
        v_wind_matrix_m_s01=v_wind_matrix_m_s01,
        model_name=model_name, grid_id=grid_name,
        axes_object=axes_object, basemap_object=basemap_object,
        first_row_in_full_grid=row_limits[0],
        first_column_in_full_grid=column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=True, colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_WIND_SPEED_KT, colour_maximum_kt=MAX_WIND_SPEED_KT
    )

    orig_x_metres, orig_y_metres = basemap_object(
        orig_longitude_deg, orig_latitude_deg
    )
    axes_object.plot(
        orig_x_metres, orig_y_metres, linestyle='None',
        marker=ORIGIN_MARKER_TYPE, markersize=ORIGIN_MARKER_SIZE,
        markeredgewidth=ORIGIN_MARKER_EDGE_WIDTH,
        markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR
    )

    extrap_x_metres, extrap_y_metres = basemap_object(
        extrap_longitude_deg, extrap_latitude_deg
    )
    axes_object.plot(
        extrap_x_metres, extrap_y_metres, linestyle='None',
        marker=EXTRAP_MARKER_TYPE, markersize=EXTRAP_MARKER_SIZE,
        markeredgewidth=EXTRAP_MARKER_EDGE_WIDTH,
        markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR
    )

    plotting_utils.plot_linear_colour_bar(
        axes_object_or_matrix=axes_object, data_matrix=main_field_matrix,
        colour_map_object=COLOUR_MAP_OBJECT,
        min_value=min_colour_value, max_value=max_colour_value,
        orientation_string='vertical'
    )

    output_file_name = '{0:s}/{1:s}_{2:s}.jpg'.format(
        output_dir_name, full_storm_id_string.replace('_', '-'),
        time_conversion.unix_sec_to_string(
            storm_time_unix_sec, FILE_NAME_TIME_FORMAT
        )
    )

    print('Saving figure to: "{0:s}"...'.format(output_file_name))
    pyplot.savefig(
        output_file_name, dpi=FIGURE_RESOLUTION_DPI,
        pad_inches=0, bbox_inches='tight'
    )
    pyplot.close()