def _plot_locating_variable( locating_var_matrix_m01_s01, title_string, annotation_string, output_file_name): """Plots locating variable. M = number of rows in grid N = number of columns in grid :param locating_var_matrix_m01_s01: M-by-N numpy array with values of locating variable. :param title_string: Title (will be placed above figure). :param annotation_string: Text annotation (will be placed in top left of figure). :param output_file_name: Path to output file (figure will be saved here). """ (narr_row_limits, narr_column_limits, axes_object, basemap_object ) = _init_basemap(BORDER_COLOUR) matrix_to_plot = locating_var_matrix_m01_s01[ narr_row_limits[0]:(narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1) ] * LOCATING_VAR_MULTIPLIER max_colour_value = numpy.nanpercentile( numpy.absolute(matrix_to_plot), MAX_COLOUR_PERCENTILE) min_colour_value = -1 * max_colour_value nwp_plotting.plot_subgrid( field_matrix=matrix_to_plot, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=LOCATING_VAR_COLOUR_MAP_OBJECT, min_value_in_colour_map=min_colour_value, max_value_in_colour_map=max_colour_value, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0]) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=matrix_to_plot, colour_map=LOCATING_VAR_COLOUR_MAP_OBJECT, colour_min=min_colour_value, colour_max=max_colour_value, orientation='vertical', extend_min=True, extend_max=True, fraction_of_axis_length=COLOUR_BAR_LENGTH_FRACTION) pyplot.title(title_string) plotting_utils.annotate_axes( axes_object=axes_object, annotation_string=annotation_string) print 'Saving figure to: "{0:s}"...'.format(output_file_name) pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=output_file_name, output_file_name=output_file_name)
def _plot_fronts(actual_binary_matrix, predicted_binary_matrix, title_string, annotation_string, output_file_name): """Plots actual and predicted fronts. M = number of rows in grid N = number of columns in grid :param actual_binary_matrix: M-by-N numpy array. If actual_binary_matrix[i, j] = 1, there is an actual front passing through grid cell [i, j]. :param predicted_binary_matrix: Same but for predicted fronts. :param title_string: Title (will be placed above figure). :param annotation_string: Text annotation (will be placed in top left of figure). :param output_file_name: Path to output file (figure will be saved here). """ (narr_row_limits, narr_column_limits) = nwp_plotting.latlng_limits_to_rowcol_limits( min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG, min_longitude_deg=MIN_LONGITUDE_DEG, max_longitude_deg=MAX_LONGITUDE_DEG, model_name=nwp_model_utils.NARR_MODEL_NAME) _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=narr_row_limits[0], last_row_in_full_grid=narr_row_limits[1], first_column_in_full_grid=narr_column_limits[0], last_column_in_full_grid=narr_column_limits[1], resolution_string='i') plotting_utils.plot_coastlines(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_countries(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_states_and_provinces(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_parallels(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG) plotting_utils.plot_meridians(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG) this_colour_map_object, this_colour_norm_object = _get_colour_map(True) this_matrix = actual_binary_matrix[0, narr_row_limits[0]:( narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1)] nwp_plotting.plot_subgrid( field_matrix=this_matrix, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=this_colour_map_object, min_value_in_colour_map=this_colour_norm_object.boundaries[0], max_value_in_colour_map=this_colour_norm_object.boundaries[-1], first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], opacity=ACTUAL_FRONT_OPACITY) this_colour_map_object, this_colour_norm_object = _get_colour_map(False) this_matrix = predicted_binary_matrix[0, narr_row_limits[0]:( narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1)] nwp_plotting.plot_subgrid( field_matrix=this_matrix, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=this_colour_map_object, min_value_in_colour_map=this_colour_norm_object.boundaries[0], max_value_in_colour_map=this_colour_norm_object.boundaries[-1], first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], opacity=PREDICTED_FRONT_OPACITY) pyplot.title(title_string) plotting_utils.annotate_axes(axes_object=axes_object, annotation_string=annotation_string) print 'Saving figure to: "{0:s}"...'.format(output_file_name) file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=output_file_name, output_file_name=output_file_name)
def _plot_one_time( predictor_matrix, predictor_names, front_polyline_table, high_low_table, thermal_colour_map_object, max_thermal_prctile_for_colours, narr_row_limits, narr_column_limits, title_string, letter_label, output_file_name): """Plots predictors at one time. M = number of rows in grid N = number of columns in grid C = number of channels (predictors) :param predictor_matrix: M-by-N-by-C numpy array of predictor values. :param predictor_names: length-C list of predictor names. :param front_polyline_table: pandas DataFrame returned by `fronts_io.read_polylines_from_file`. :param high_low_table: pandas DataFrame returned by `wpc_bulletin_io.read_highs_and_lows`. :param thermal_colour_map_object: See documentation at top of file. :param max_thermal_prctile_for_colours: Same. :param narr_row_limits: length-2 numpy array, indicating the first and last NARR rows in `predictor_matrix`. If narr_row_limits = [i, k], `predictor_matrix` spans rows i...k of the full NARR grid. :param narr_column_limits: Same but for columns. :param title_string: Title (will be placed above figure). :param letter_label: Letter label. If this is "a", the label "(a)" will be printed at the top left of the figure. :param output_file_name: Path to output file (figure will be saved here). """ _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=narr_row_limits[0], last_row_in_full_grid=narr_row_limits[1], first_column_in_full_grid=narr_column_limits[0], last_column_in_full_grid=narr_column_limits[1] ) plotting_utils.plot_coastlines( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_countries( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_states_and_provinces( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_parallels( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG ) plotting_utils.plot_meridians( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG ) num_predictors = len(predictor_names) for j in range(num_predictors): if predictor_names[j] in WIND_FIELD_NAMES: continue min_colour_value = numpy.percentile( predictor_matrix[..., j], 100. - max_thermal_prctile_for_colours) max_colour_value = numpy.percentile( predictor_matrix[..., j], max_thermal_prctile_for_colours) nwp_plotting.plot_subgrid( field_matrix=predictor_matrix[..., j], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=thermal_colour_map_object, min_value_in_colour_map=min_colour_value, max_value_in_colour_map=max_colour_value, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0] ) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=predictor_matrix[..., j], colour_map=thermal_colour_map_object, colour_min=min_colour_value, colour_max=max_colour_value, orientation='horizontal', extend_min=True, extend_max=True, fraction_of_axis_length=0.9) u_wind_index = predictor_names.index( processed_narr_io.U_WIND_GRID_RELATIVE_NAME) v_wind_index = predictor_names.index( processed_narr_io.V_WIND_GRID_RELATIVE_NAME) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=predictor_matrix[..., u_wind_index], v_wind_matrix_m_s01=predictor_matrix[..., v_wind_index], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) if high_low_table is None: num_pressure_systems = 0 else: num_pressure_systems = len(high_low_table.index) for i in range(num_pressure_systems): this_system_type_string = high_low_table[ wpc_bulletin_io.SYSTEM_TYPE_COLUMN].values[i] if this_system_type_string == wpc_bulletin_io.HIGH_PRESSURE_STRING: this_string = 'H' else: this_string = 'L' this_x_coord_metres, this_y_coord_metres = basemap_object( high_low_table[wpc_bulletin_io.LONGITUDE_COLUMN].values[i], high_low_table[wpc_bulletin_io.LATITUDE_COLUMN].values[i] ) axes_object.text( this_x_coord_metres, this_y_coord_metres, this_string, fontsize=PRESSURE_SYSTEM_FONT_SIZE, color=PRESSURE_SYSTEM_COLOUR, fontweight='bold', horizontalalignment='center', verticalalignment='center') num_fronts = len(front_polyline_table.index) for i in range(num_fronts): this_front_type_string = front_polyline_table[ front_utils.FRONT_TYPE_COLUMN].values[i] if this_front_type_string == front_utils.WARM_FRONT_STRING_ID: this_colour = WARM_FRONT_COLOUR else: this_colour = COLD_FRONT_COLOUR front_plotting.plot_front_with_markers( line_latitudes_deg=front_polyline_table[ front_utils.LATITUDES_COLUMN].values[i], line_longitudes_deg=front_polyline_table[ front_utils.LONGITUDES_COLUMN].values[i], axes_object=axes_object, basemap_object=basemap_object, front_type_string=front_polyline_table[ front_utils.FRONT_TYPE_COLUMN].values[i], marker_colour=this_colour) pyplot.title(title_string) if letter_label is not None: plotting_utils.annotate_axes( axes_object=axes_object, annotation_string='({0:s})'.format(letter_label) ) print 'Saving figure to: "{0:s}"...'.format(output_file_name) pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=output_file_name, output_file_name=output_file_name)
def _run(): """Plots input example. This is effectively the main method. :return: figure_file_name: Path to output file (where the figure was saved). """ valid_time_unix_sec = time_conversion.string_to_unix_sec( VALID_TIME_STRING, TIME_FORMAT) front_file_name = fronts_io.find_file_for_one_time( top_directory_name=TOP_FRONT_DIR_NAME, file_type=fronts_io.POLYLINE_FILE_TYPE, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(front_file_name) front_line_table = fronts_io.read_polylines_from_file(front_file_name) num_narr_fields = len(NARR_FIELD_NAMES) narr_matrix_by_field = [numpy.array([])] * num_narr_fields for j in range(num_narr_fields): if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES: this_directory_name = '{0:s}/earth_relative_wind'.format( TOP_NARR_DIRECTORY_NAME) else: this_directory_name = TOP_NARR_DIRECTORY_NAME + '' this_file_name = processed_narr_io.find_file_for_one_time( top_directory_name=this_directory_name, field_name=NARR_FIELD_NAMES[j], pressure_level_mb=PRESSURE_LEVEL_MB, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(this_file_name) narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file( this_file_name)[0][0, ...] narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j]) if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME: narr_matrix_by_field[j] = (narr_matrix_by_field[j] - ZERO_CELSIUS_IN_KELVINS) # (_, front_centroid_latitude_deg, front_centroid_longitude_deg # ) = _find_nearest_front( # front_line_table=front_line_table, # query_latitude_deg=APPROX_FRONT_LATITUDE_DEG, # query_longitude_deg=APPROX_FRONT_LONGITUDE_DEG) front_centroid_latitude_deg = APPROX_FRONT_LATITUDE_DEG + 0. front_centroid_longitude_deg = APPROX_FRONT_LONGITUDE_DEG + 0. projection_object = nwp_model_utils.init_model_projection( nwp_model_utils.NARR_MODEL_NAME) these_x_metres, these_y_metres = nwp_model_utils.project_latlng_to_xy( latitudes_deg=numpy.array([front_centroid_latitude_deg]), longitudes_deg=numpy.array([front_centroid_longitude_deg]), projection_object=projection_object, model_name=nwp_model_utils.NARR_MODEL_NAME) front_centroid_x_metres = these_x_metres[0] front_centroid_y_metres = these_y_metres[0] grid_spacing_metres, _ = nwp_model_utils.get_xy_grid_spacing( model_name=nwp_model_utils.NARR_MODEL_NAME) center_narr_row_index = int( numpy.round(front_centroid_y_metres / grid_spacing_metres)) center_narr_column_index = int( numpy.round(front_centroid_x_metres / grid_spacing_metres)) first_narr_row_index = center_narr_row_index - NUM_ROWS_IN_HALF_GRID last_narr_row_index = center_narr_row_index + NUM_ROWS_IN_HALF_GRID first_narr_column_index = (center_narr_column_index - NUM_COLUMNS_IN_HALF_GRID) last_narr_column_index = center_narr_column_index + NUM_COLUMNS_IN_HALF_GRID for j in range(num_narr_fields): narr_matrix_by_field[j] = narr_matrix_by_field[j][ first_narr_row_index:(last_narr_row_index + 1), first_narr_column_index:(last_narr_column_index + 1)] _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=first_narr_row_index, last_row_in_full_grid=last_narr_row_index, first_column_in_full_grid=first_narr_column_index, last_column_in_full_grid=last_narr_column_index, resolution_string='i') plotting_utils.plot_coastlines(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_countries(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_states_and_provinces(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_parallels(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG) plotting_utils.plot_meridians(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG) for j in range(num_narr_fields): if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES: continue min_colour_value = numpy.percentile(narr_matrix_by_field[j], MIN_COLOUR_PERCENTILE) max_colour_value = numpy.percentile(narr_matrix_by_field[j], MAX_COLOUR_PERCENTILE) nwp_plotting.plot_subgrid( field_matrix=narr_matrix_by_field[j], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT, min_value_in_colour_map=min_colour_value, max_value_in_colour_map=max_colour_value, first_row_in_full_grid=first_narr_row_index, first_column_in_full_grid=first_narr_column_index) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=narr_matrix_by_field[j], colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=min_colour_value, colour_max=max_colour_value, orientation='horizontal', extend_min=True, extend_max=True) u_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.U_WIND_EARTH_RELATIVE_NAME) v_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.V_WIND_EARTH_RELATIVE_NAME) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index], v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=first_narr_row_index, first_column_in_full_grid=first_narr_column_index, plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) num_fronts = len(front_line_table.index) for i in range(num_fronts): this_front_type_string = front_line_table[ front_utils.FRONT_TYPE_COLUMN].values[i] if this_front_type_string == front_utils.WARM_FRONT_STRING_ID: this_colour = WARM_FRONT_COLOUR else: this_colour = COLD_FRONT_COLOUR # front_plotting.plot_polyline( # latitudes_deg=front_line_table[ # front_utils.LATITUDES_COLUMN].values[i], # longitudes_deg=front_line_table[ # front_utils.LONGITUDES_COLUMN].values[i], # basemap_object=basemap_object, axes_object=axes_object, # front_type=front_line_table[ # front_utils.FRONT_TYPE_COLUMN].values[i], # line_width=FRONT_LINE_WIDTH, line_colour=this_colour) print 'Saving figure to: "{0:s}"...'.format(OUTPUT_FILE_NAME) file_system_utils.mkdir_recursive_if_necessary(file_name=OUTPUT_FILE_NAME) pyplot.savefig(OUTPUT_FILE_NAME, dpi=OUTPUT_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=OUTPUT_FILE_NAME, output_file_name=OUTPUT_FILE_NAME)
def _plot_narr_fields( wet_bulb_theta_matrix_kelvins, u_wind_matrix_m_s01, v_wind_matrix_m_s01, title_string, annotation_string, output_file_name): """Plots NARR fields. M = number of rows in grid N = number of columns in grid :param wet_bulb_theta_matrix_kelvins: M-by-N numpy array of wet-bulb potential temperatures. :param u_wind_matrix_m_s01: M-by-N numpy array of u-wind components (metres per second). :param v_wind_matrix_m_s01: Same but for v-wind. :param title_string: Title (will be placed above figure). :param annotation_string: Text annotation (will be placed in top left of figure). :param output_file_name: Path to output file (figure will be saved here). """ (narr_row_limits, narr_column_limits, axes_object, basemap_object ) = _init_basemap(BORDER_COLOUR) wet_bulb_theta_matrix_to_plot = wet_bulb_theta_matrix_kelvins[ narr_row_limits[0]:(narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1) ] - ZERO_CELSIUS_IN_KELVINS u_wind_matrix_to_plot = u_wind_matrix_m_s01[ narr_row_limits[0]:(narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1) ] v_wind_matrix_to_plot = v_wind_matrix_m_s01[ narr_row_limits[0]:(narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1) ] nwp_plotting.plot_subgrid( field_matrix=wet_bulb_theta_matrix_to_plot, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT, min_value_in_colour_map=numpy.nanpercentile( wet_bulb_theta_matrix_to_plot, MIN_COLOUR_PERCENTILE), max_value_in_colour_map=numpy.nanpercentile( wet_bulb_theta_matrix_to_plot, MAX_COLOUR_PERCENTILE), first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0]) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=wet_bulb_theta_matrix_to_plot, colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=numpy.nanpercentile( wet_bulb_theta_matrix_to_plot, MIN_COLOUR_PERCENTILE), colour_max=numpy.nanpercentile( wet_bulb_theta_matrix_to_plot, MAX_COLOUR_PERCENTILE), orientation='vertical', extend_min=True, extend_max=True, fraction_of_axis_length=COLOUR_BAR_LENGTH_FRACTION) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=u_wind_matrix_to_plot, v_wind_matrix_m_s01=v_wind_matrix_to_plot, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) pyplot.title(title_string) plotting_utils.annotate_axes( axes_object=axes_object, annotation_string=annotation_string) print 'Saving figure to: "{0:s}"...'.format(output_file_name) pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=output_file_name, output_file_name=output_file_name)
def _plot_one_time(valid_time_string, pressure_level_mb, title_string, annotation_string, narr_rotation_cos_matrix, narr_rotation_sin_matrix): """Plots WPC fronts and NARR fields at one time. M = number of grid rows in the full NARR N = number of grid columns in the full NARR :param valid_time_string: Valid time (format "yyyy-mm-dd-HH"). :param pressure_level_mb: Pressure level (millibars). :param title_string: Title (will be placed above figure). :param annotation_string: Annotation (will be placed above and left of figure). :param narr_rotation_cos_matrix: M-by-N numpy array of cosines for wind- rotation angles. :param narr_rotation_sin_matrix: M-by-N numpy array of sines for wind- rotation angles. """ narr_row_limits, narr_column_limits = ( nwp_plotting.latlng_limits_to_rowcol_limits( min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG, min_longitude_deg=MIN_LONGITUDE_DEG, max_longitude_deg=MAX_LONGITUDE_DEG, model_name=nwp_model_utils.NARR_MODEL_NAME)) valid_time_unix_sec = time_conversion.string_to_unix_sec( valid_time_string, DEFAULT_TIME_FORMAT) front_file_name = fronts_io.find_file_for_one_time( top_directory_name=TOP_FRONT_DIR_NAME, file_type=fronts_io.POLYLINE_FILE_TYPE, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(front_file_name) front_line_table = fronts_io.read_polylines_from_file(front_file_name) num_narr_fields = len(NARR_FIELD_NAMES) narr_matrix_by_field = [numpy.array([])] * num_narr_fields for j in range(num_narr_fields): this_file_name = processed_narr_io.find_file_for_one_time( top_directory_name=TOP_NARR_DIRECTORY_NAME, field_name=NARR_FIELD_NAMES[j], pressure_level_mb=pressure_level_mb, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(this_file_name) narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file( this_file_name)[0][0, ...] narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j]) narr_matrix_by_field[j] = narr_matrix_by_field[j][narr_row_limits[0]:( narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1)] if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME: narr_matrix_by_field[j] = (narr_matrix_by_field[j] - ZERO_CELSIUS_IN_KELVINS) _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=narr_row_limits[0], last_row_in_full_grid=narr_row_limits[1], first_column_in_full_grid=narr_column_limits[0], last_column_in_full_grid=narr_column_limits[1]) plotting_utils.plot_coastlines(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_countries(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_states_and_provinces(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_parallels(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG) plotting_utils.plot_meridians(basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG) for j in range(num_narr_fields): if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES: continue min_colour_value = numpy.percentile(narr_matrix_by_field[j], MIN_COLOUR_PERCENTILE) max_colour_value = numpy.percentile(narr_matrix_by_field[j], MAX_COLOUR_PERCENTILE) nwp_plotting.plot_subgrid( field_matrix=narr_matrix_by_field[j], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT, min_value_in_colour_map=min_colour_value, max_value_in_colour_map=max_colour_value, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0]) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=narr_matrix_by_field[j], colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=min_colour_value, colour_max=max_colour_value, orientation='horizontal', extend_min=True, extend_max=True, fraction_of_axis_length=0.9) this_cos_matrix = narr_rotation_cos_matrix[narr_row_limits[0]:( narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1)] this_sin_matrix = narr_rotation_sin_matrix[narr_row_limits[0]:( narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1)] u_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.U_WIND_GRID_RELATIVE_NAME) v_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.V_WIND_GRID_RELATIVE_NAME) narr_matrix_by_field[u_wind_index], narr_matrix_by_field[v_wind_index] = ( nwp_model_utils.rotate_winds_to_earth_relative( u_winds_grid_relative_m_s01=narr_matrix_by_field[u_wind_index], v_winds_grid_relative_m_s01=narr_matrix_by_field[v_wind_index], rotation_angle_cosines=this_cos_matrix, rotation_angle_sines=this_sin_matrix)) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index], v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) num_fronts = len(front_line_table.index) for i in range(num_fronts): this_front_type_string = front_line_table[ front_utils.FRONT_TYPE_COLUMN].values[i] if this_front_type_string == front_utils.WARM_FRONT_STRING_ID: this_colour = WARM_FRONT_COLOUR else: this_colour = COLD_FRONT_COLOUR front_plotting.plot_front_with_markers( line_latitudes_deg=front_line_table[ front_utils.LATITUDES_COLUMN].values[i], line_longitudes_deg=front_line_table[ front_utils.LONGITUDES_COLUMN].values[i], axes_object=axes_object, basemap_object=basemap_object, front_type_string=front_line_table[ front_utils.FRONT_TYPE_COLUMN].values[i], marker_colour=this_colour) pyplot.title(title_string) plotting_utils.annotate_axes(axes_object=axes_object, annotation_string=annotation_string) file_system_utils.mkdir_recursive_if_necessary( directory_name=OUTPUT_DIR_NAME) figure_file_name = '{0:s}/fronts_{1:04d}mb_{2:s}.jpg'.format( OUTPUT_DIR_NAME, pressure_level_mb, valid_time_string) print 'Saving figure to: "{0:s}"...'.format(figure_file_name) pyplot.savefig(figure_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=figure_file_name, output_file_name=figure_file_name) return figure_file_name
def _plot_observations_one_time( valid_time_string, title_string, annotation_string, output_file_name): """Plots observations (NARR predictors and WPC fronts) for one valid time. :param valid_time_string: Valid time (format "yyyy-mm-dd-HH"). :param title_string: Title (will be placed above figure). :param annotation_string: Text annotation (will be placed in top left of figure). :param output_file_name: Path to output file (figure will be saved here). """ (narr_row_limits, narr_column_limits ) = nwp_plotting.latlng_limits_to_rowcol_limits( min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG, min_longitude_deg=MIN_LONGITUDE_DEG, max_longitude_deg=MAX_LONGITUDE_DEG, model_name=nwp_model_utils.NARR_MODEL_NAME) valid_time_unix_sec = time_conversion.string_to_unix_sec( valid_time_string, INPUT_TIME_FORMAT) front_file_name = fronts_io.find_file_for_one_time( top_directory_name=TOP_FRONT_DIR_NAME, file_type=fronts_io.POLYLINE_FILE_TYPE, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(front_file_name) front_line_table = fronts_io.read_polylines_from_file(front_file_name) num_narr_fields = len(NARR_FIELD_NAMES) narr_matrix_by_field = [numpy.array([])] * num_narr_fields for j in range(num_narr_fields): if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES: this_directory_name = TOP_NARR_WIND_DIR_NAME + '' else: this_directory_name = TOP_NARR_DIR_NAME + '' this_file_name = processed_narr_io.find_file_for_one_time( top_directory_name=this_directory_name, field_name=NARR_FIELD_NAMES[j], pressure_level_mb=PRESSURE_LEVEL_MB, valid_time_unix_sec=valid_time_unix_sec) print 'Reading data from: "{0:s}"...'.format(this_file_name) narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file( this_file_name)[0][0, ...] narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j]) narr_matrix_by_field[j] = narr_matrix_by_field[j][ narr_row_limits[0]:(narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] + 1) ] if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME: narr_matrix_by_field[j] = ( narr_matrix_by_field[j] - ZERO_CELSIUS_IN_KELVINS ) _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=narr_row_limits[0], last_row_in_full_grid=narr_row_limits[1], first_column_in_full_grid=narr_column_limits[0], last_column_in_full_grid=narr_column_limits[1]) plotting_utils.plot_coastlines( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_countries( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_states_and_provinces( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR) plotting_utils.plot_parallels( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG) plotting_utils.plot_meridians( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG) for j in range(num_narr_fields): if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES: continue min_colour_value = numpy.percentile( narr_matrix_by_field[j], MIN_COLOUR_PERCENTILE) max_colour_value = numpy.percentile( narr_matrix_by_field[j], MAX_COLOUR_PERCENTILE) nwp_plotting.plot_subgrid( field_matrix=narr_matrix_by_field[j], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT, min_value_in_colour_map=min_colour_value, max_value_in_colour_map=max_colour_value, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0]) plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=narr_matrix_by_field[j], colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=min_colour_value, colour_max=max_colour_value, orientation='vertical', extend_min=True, extend_max=True, fraction_of_axis_length=LENGTH_FRACTION_FOR_THETA_COLOUR_BAR) u_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.U_WIND_EARTH_RELATIVE_NAME) v_wind_index = NARR_FIELD_NAMES.index( processed_narr_io.V_WIND_EARTH_RELATIVE_NAME) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index], v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index], model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=narr_row_limits[0], first_column_in_full_grid=narr_column_limits[0], plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) num_fronts = len(front_line_table.index) for i in range(num_fronts): this_front_type_string = front_line_table[ front_utils.FRONT_TYPE_COLUMN].values[i] if this_front_type_string == front_utils.WARM_FRONT_STRING_ID: this_colour = WARM_FRONT_COLOUR else: this_colour = COLD_FRONT_COLOUR front_plotting.plot_polyline( latitudes_deg=front_line_table[ front_utils.LATITUDES_COLUMN].values[i], longitudes_deg=front_line_table[ front_utils.LONGITUDES_COLUMN].values[i], basemap_object=basemap_object, axes_object=axes_object, front_type=front_line_table[ front_utils.FRONT_TYPE_COLUMN].values[i], line_width=FRONT_LINE_WIDTH, line_colour=this_colour) pyplot.title(title_string) plotting_utils.annotate_axes( axes_object=axes_object, annotation_string=annotation_string) print 'Saving figure to: "{0:s}"...'.format(output_file_name) file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close() imagemagick_utils.trim_whitespace(input_file_name=output_file_name, output_file_name=output_file_name)
def _run(example_file_name, top_front_line_dir_name, num_examples, example_indices, thetaw_colour_map_name, thetaw_max_colour_percentile, output_dir_name): """Plots one or more input examples. This is effectively the main method. :param example_file_name: See documentation at top of file. :param top_front_line_dir_name: Same. :param num_examples: Same. :param example_indices: Same. :param thetaw_colour_map_name: Same. :param thetaw_max_colour_percentile: Same. :param output_dir_name: Same. """ if num_examples <= 0: num_examples = None if num_examples is None: error_checking.assert_is_geq_numpy_array(example_indices, 0) else: error_checking.assert_is_greater(num_examples, 0) error_checking.assert_is_geq(thetaw_max_colour_percentile, 0) error_checking.assert_is_leq(thetaw_max_colour_percentile, 100) thetaw_colour_map_object = pyplot.cm.get_cmap(thetaw_colour_map_name) file_system_utils.mkdir_recursive_if_necessary( directory_name=output_dir_name) print 'Reading normalized examples from: "{0:s}"...'.format( example_file_name) example_dict = trainval_io.read_downsized_3d_examples( netcdf_file_name=example_file_name, num_half_rows_to_keep=NUM_HALF_ROWS, num_half_columns_to_keep=NUM_HALF_COLUMNS, predictor_names_to_keep=NARR_PREDICTOR_NAMES) # TODO(thunderhoser): This is a HACK (assuming that normalization method is # z-score and not min-max). mean_value_matrix = example_dict[trainval_io.FIRST_NORM_PARAM_KEY] standard_deviation_matrix = example_dict[trainval_io.SECOND_NORM_PARAM_KEY] normalization_dict = { ml_utils.MIN_VALUE_MATRIX_KEY: None, ml_utils.MAX_VALUE_MATRIX_KEY: None, ml_utils.MEAN_VALUE_MATRIX_KEY: mean_value_matrix, ml_utils.STDEV_MATRIX_KEY: standard_deviation_matrix } example_dict[trainval_io.PREDICTOR_MATRIX_KEY] = ( ml_utils.denormalize_predictors( predictor_matrix=example_dict[trainval_io.PREDICTOR_MATRIX_KEY], normalization_dict=normalization_dict)) narr_latitude_matrix_deg, narr_longitude_matrix_deg = ( nwp_model_utils.get_latlng_grid_point_matrices( model_name=nwp_model_utils.NARR_MODEL_NAME)) narr_rotation_cos_matrix, narr_rotation_sin_matrix = ( nwp_model_utils.get_wind_rotation_angles( latitudes_deg=narr_latitude_matrix_deg, longitudes_deg=narr_longitude_matrix_deg, model_name=nwp_model_utils.NARR_MODEL_NAME)) num_examples_total = len(example_dict[trainval_io.TARGET_TIMES_KEY]) example_indices = numpy.linspace(0, num_examples_total - 1, num=num_examples_total, dtype=int) if num_examples is not None: num_examples = min([num_examples, num_examples_total]) example_indices = numpy.random.choice(example_indices, size=num_examples, replace=False) thetaw_index = NARR_PREDICTOR_NAMES.index( processed_narr_io.WET_BULB_THETA_NAME) u_wind_index = NARR_PREDICTOR_NAMES.index( processed_narr_io.U_WIND_GRID_RELATIVE_NAME) v_wind_index = NARR_PREDICTOR_NAMES.index( processed_narr_io.V_WIND_GRID_RELATIVE_NAME) for i in example_indices: this_center_row_index = example_dict[trainval_io.ROW_INDICES_KEY][i] this_first_row_index = this_center_row_index - NUM_HALF_ROWS this_last_row_index = this_center_row_index + NUM_HALF_ROWS this_center_column_index = example_dict[ trainval_io.COLUMN_INDICES_KEY][i] this_first_column_index = this_center_column_index - NUM_HALF_COLUMNS this_last_column_index = this_center_column_index + NUM_HALF_COLUMNS this_u_wind_matrix_m_s01 = example_dict[ trainval_io.PREDICTOR_MATRIX_KEY][i, ..., u_wind_index] this_v_wind_matrix_m_s01 = example_dict[ trainval_io.PREDICTOR_MATRIX_KEY][i, ..., v_wind_index] this_cos_matrix = narr_rotation_cos_matrix[this_first_row_index:( this_last_row_index + 1), this_first_column_index:(this_last_column_index + 1)] this_sin_matrix = narr_rotation_sin_matrix[this_first_row_index:( this_last_row_index + 1), this_first_column_index:(this_last_column_index + 1)] this_u_wind_matrix_m_s01, this_v_wind_matrix_m_s01 = ( nwp_model_utils.rotate_winds_to_earth_relative( u_winds_grid_relative_m_s01=this_u_wind_matrix_m_s01, v_winds_grid_relative_m_s01=this_v_wind_matrix_m_s01, rotation_angle_cosines=this_cos_matrix, rotation_angle_sines=this_sin_matrix)) _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=nwp_model_utils.NARR_MODEL_NAME, first_row_in_full_grid=this_first_row_index, last_row_in_full_grid=this_last_row_index, first_column_in_full_grid=this_first_column_index, last_column_in_full_grid=this_last_column_index, resolution_string='i') plotting_utils.plot_coastlines(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR, line_width=BORDER_WIDTH) plotting_utils.plot_countries(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR, line_width=BORDER_WIDTH) plotting_utils.plot_states_and_provinces(basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR, line_width=BORDER_WIDTH) plotting_utils.plot_parallels( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lat_deg=-90., upper_right_lat_deg=90., parallel_spacing_deg=PARALLEL_SPACING_DEG) plotting_utils.plot_meridians( basemap_object=basemap_object, axes_object=axes_object, bottom_left_lng_deg=0., upper_right_lng_deg=360., meridian_spacing_deg=MERIDIAN_SPACING_DEG) this_thetaw_matrix_kelvins = example_dict[ trainval_io.PREDICTOR_MATRIX_KEY][i, ..., thetaw_index] this_min_value = numpy.percentile(this_thetaw_matrix_kelvins, 100. - thetaw_max_colour_percentile) this_max_value = numpy.percentile(this_thetaw_matrix_kelvins, thetaw_max_colour_percentile) nwp_plotting.plot_subgrid( field_matrix=this_thetaw_matrix_kelvins, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, colour_map=thetaw_colour_map_object, min_value_in_colour_map=this_min_value, max_value_in_colour_map=this_max_value, first_row_in_full_grid=this_first_row_index, first_column_in_full_grid=this_first_column_index) colour_bar_object = plotting_utils.add_linear_colour_bar( axes_object_or_list=axes_object, values_to_colour=this_thetaw_matrix_kelvins, colour_map=thetaw_colour_map_object, colour_min=this_min_value, colour_max=this_max_value, orientation='vertical', extend_min=True, extend_max=True, fraction_of_axis_length=0.8) colour_bar_object.set_label( r'Wet-bulb potential temperature ($^{\circ}$C)') nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=this_u_wind_matrix_m_s01, v_wind_matrix_m_s01=this_v_wind_matrix_m_s01, model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=this_first_row_index, first_column_in_full_grid=this_first_column_index, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, fill_empty_barb=False, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT, colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT) this_front_file_name = fronts_io.find_file_for_one_time( top_directory_name=top_front_line_dir_name, file_type=fronts_io.POLYLINE_FILE_TYPE, valid_time_unix_sec=example_dict[trainval_io.TARGET_TIMES_KEY][i]) print time_conversion.unix_sec_to_string( example_dict[trainval_io.TARGET_TIMES_KEY][i], '%Y-%m-%d-%H') this_polyline_table = fronts_io.read_polylines_from_file( this_front_file_name) this_num_fronts = len(this_polyline_table.index) for j in range(this_num_fronts): this_front_type_string = this_polyline_table[ front_utils.FRONT_TYPE_COLUMN].values[j] if this_front_type_string == front_utils.WARM_FRONT_STRING_ID: this_colour = WARM_FRONT_COLOUR else: this_colour = COLD_FRONT_COLOUR front_plotting.plot_front_with_markers( line_latitudes_deg=this_polyline_table[ front_utils.LATITUDES_COLUMN].values[j], line_longitudes_deg=this_polyline_table[ front_utils.LONGITUDES_COLUMN].values[j], axes_object=axes_object, basemap_object=basemap_object, front_type_string=this_polyline_table[ front_utils.FRONT_TYPE_COLUMN].values[j], marker_colour=this_colour, marker_size=FRONT_MARKER_SIZE, marker_spacing_metres=FRONT_SPACING_METRES) this_output_file_name = '{0:s}/example{1:06d}.jpg'.format( output_dir_name, i) print 'Saving figure to: "{0:s}"...'.format(this_output_file_name) pyplot.savefig(this_output_file_name, dpi=FIGURE_RESOLUTION_DPI) pyplot.close()
def _plot_rapruc_one_example( full_storm_id_string, storm_time_unix_sec, top_tracking_dir_name, latitude_buffer_deg, longitude_buffer_deg, lead_time_seconds, field_name_grib1, output_dir_name, rap_file_name=None, ruc_file_name=None): """Plots RAP or RUC field for one example. :param full_storm_id_string: Full storm ID. :param storm_time_unix_sec: Valid time. :param top_tracking_dir_name: See documentation at top of file. :param latitude_buffer_deg: Same. :param longitude_buffer_deg: Same. :param lead_time_seconds: Same. :param field_name_grib1: Same. :param output_dir_name: Same. :param rap_file_name: Path to file with RAP analysis. :param ruc_file_name: [used only if `rap_file_name is None`] Path to file with RUC analysis. """ tracking_file_name = tracking_io.find_file( top_tracking_dir_name=top_tracking_dir_name, tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2, source_name=tracking_utils.SEGMOTION_NAME, valid_time_unix_sec=storm_time_unix_sec, spc_date_string= time_conversion.time_to_spc_date_string(storm_time_unix_sec), raise_error_if_missing=True ) print('Reading data from: "{0:s}"...'.format(tracking_file_name)) storm_object_table = tracking_io.read_file(tracking_file_name) storm_object_table = storm_object_table.loc[ storm_object_table[tracking_utils.FULL_ID_COLUMN] == full_storm_id_string ] extrap_times_sec = numpy.array([0, lead_time_seconds], dtype=int) storm_object_table = soundings._create_target_points_for_interp( storm_object_table=storm_object_table, lead_times_seconds=extrap_times_sec ) orig_latitude_deg = ( storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[0] ) orig_longitude_deg = ( storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[0] ) extrap_latitude_deg = ( storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[1] ) extrap_longitude_deg = ( storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[1] ) if rap_file_name is None: grib_file_name = ruc_file_name model_name = nwp_model_utils.RUC_MODEL_NAME else: grib_file_name = rap_file_name model_name = nwp_model_utils.RAP_MODEL_NAME pathless_grib_file_name = os.path.split(grib_file_name)[-1] grid_name = pathless_grib_file_name.split('_')[1] host_name = socket.gethostname() if 'casper' in host_name: wgrib_exe_name = '/glade/work/ryanlage/wgrib/wgrib' wgrib2_exe_name = '/glade/work/ryanlage/wgrib2/wgrib2/wgrib2' else: wgrib_exe_name = '/condo/swatwork/ralager/wgrib/wgrib' wgrib2_exe_name = '/condo/swatwork/ralager/grib2/wgrib2/wgrib2' print('Reading field "{0:s}" from: "{1:s}"...'.format( field_name_grib1, grib_file_name )) main_field_matrix = nwp_model_io.read_field_from_grib_file( grib_file_name=grib_file_name, field_name_grib1=field_name_grib1, model_name=model_name, grid_id=grid_name, wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name ) u_wind_name_grib1 = 'UGRD:{0:s}'.format( field_name_grib1.split(':')[-1] ) u_wind_name_grib1 = u_wind_name_grib1.replace('2 m', '10 m') print('Reading field "{0:s}" from: "{1:s}"...'.format( u_wind_name_grib1, grib_file_name )) u_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file( grib_file_name=grib_file_name, field_name_grib1=u_wind_name_grib1, model_name=model_name, grid_id=grid_name, wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name ) v_wind_name_grib1 = 'VGRD:{0:s}'.format( u_wind_name_grib1.split(':')[-1] ) print('Reading field "{0:s}" from: "{1:s}"...'.format( v_wind_name_grib1, grib_file_name )) v_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file( grib_file_name=grib_file_name, field_name_grib1=v_wind_name_grib1, model_name=model_name, grid_id=grid_name, wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name ) latitude_matrix_deg, longitude_matrix_deg = ( nwp_model_utils.get_latlng_grid_point_matrices( model_name=model_name, grid_name=grid_name) ) cosine_matrix, sine_matrix = nwp_model_utils.get_wind_rotation_angles( latitudes_deg=latitude_matrix_deg, longitudes_deg=longitude_matrix_deg, model_name=model_name ) u_wind_matrix_m_s01, v_wind_matrix_m_s01 = ( nwp_model_utils.rotate_winds_to_earth_relative( u_winds_grid_relative_m_s01=u_wind_matrix_m_s01, v_winds_grid_relative_m_s01=v_wind_matrix_m_s01, rotation_angle_cosines=cosine_matrix, rotation_angle_sines=sine_matrix) ) min_plot_latitude_deg = ( min([orig_latitude_deg, extrap_latitude_deg]) - latitude_buffer_deg ) max_plot_latitude_deg = ( max([orig_latitude_deg, extrap_latitude_deg]) + latitude_buffer_deg ) min_plot_longitude_deg = ( min([orig_longitude_deg, extrap_longitude_deg]) - longitude_buffer_deg ) max_plot_longitude_deg = ( max([orig_longitude_deg, extrap_longitude_deg]) + longitude_buffer_deg ) row_limits, column_limits = nwp_plotting.latlng_limits_to_rowcol_limits( min_latitude_deg=min_plot_latitude_deg, max_latitude_deg=max_plot_latitude_deg, min_longitude_deg=min_plot_longitude_deg, max_longitude_deg=max_plot_longitude_deg, model_name=model_name, grid_id=grid_name ) main_field_matrix = main_field_matrix[ row_limits[0]:(row_limits[1] + 1), column_limits[0]:(column_limits[1] + 1) ] u_wind_matrix_m_s01 = u_wind_matrix_m_s01[ row_limits[0]:(row_limits[1] + 1), column_limits[0]:(column_limits[1] + 1) ] v_wind_matrix_m_s01 = v_wind_matrix_m_s01[ row_limits[0]:(row_limits[1] + 1), column_limits[0]:(column_limits[1] + 1) ] _, axes_object, basemap_object = nwp_plotting.init_basemap( model_name=model_name, grid_id=grid_name, first_row_in_full_grid=row_limits[0], last_row_in_full_grid=row_limits[1], first_column_in_full_grid=column_limits[0], last_column_in_full_grid=column_limits[1] ) plotting_utils.plot_coastlines( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_countries( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_states_and_provinces( basemap_object=basemap_object, axes_object=axes_object, line_colour=BORDER_COLOUR ) plotting_utils.plot_parallels( basemap_object=basemap_object, axes_object=axes_object, num_parallels=NUM_PARALLELS ) plotting_utils.plot_meridians( basemap_object=basemap_object, axes_object=axes_object, num_meridians=NUM_MERIDIANS ) min_colour_value = numpy.nanpercentile( main_field_matrix, 100. - MAX_COLOUR_PERCENTILE ) max_colour_value = numpy.nanpercentile( main_field_matrix, MAX_COLOUR_PERCENTILE ) nwp_plotting.plot_subgrid( field_matrix=main_field_matrix, model_name=model_name, grid_id=grid_name, axes_object=axes_object, basemap_object=basemap_object, colour_map_object=COLOUR_MAP_OBJECT, min_colour_value=min_colour_value, max_colour_value=max_colour_value, first_row_in_full_grid=row_limits[0], first_column_in_full_grid=column_limits[0] ) nwp_plotting.plot_wind_barbs_on_subgrid( u_wind_matrix_m_s01=u_wind_matrix_m_s01, v_wind_matrix_m_s01=v_wind_matrix_m_s01, model_name=model_name, grid_id=grid_name, axes_object=axes_object, basemap_object=basemap_object, first_row_in_full_grid=row_limits[0], first_column_in_full_grid=column_limits[0], plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB, plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB, barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS, fill_empty_barb=True, colour_map=WIND_COLOUR_MAP_OBJECT, colour_minimum_kt=MIN_WIND_SPEED_KT, colour_maximum_kt=MAX_WIND_SPEED_KT ) orig_x_metres, orig_y_metres = basemap_object( orig_longitude_deg, orig_latitude_deg ) axes_object.plot( orig_x_metres, orig_y_metres, linestyle='None', marker=ORIGIN_MARKER_TYPE, markersize=ORIGIN_MARKER_SIZE, markeredgewidth=ORIGIN_MARKER_EDGE_WIDTH, markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR ) extrap_x_metres, extrap_y_metres = basemap_object( extrap_longitude_deg, extrap_latitude_deg ) axes_object.plot( extrap_x_metres, extrap_y_metres, linestyle='None', marker=EXTRAP_MARKER_TYPE, markersize=EXTRAP_MARKER_SIZE, markeredgewidth=EXTRAP_MARKER_EDGE_WIDTH, markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR ) plotting_utils.plot_linear_colour_bar( axes_object_or_matrix=axes_object, data_matrix=main_field_matrix, colour_map_object=COLOUR_MAP_OBJECT, min_value=min_colour_value, max_value=max_colour_value, orientation_string='vertical' ) output_file_name = '{0:s}/{1:s}_{2:s}.jpg'.format( output_dir_name, full_storm_id_string.replace('_', '-'), time_conversion.unix_sec_to_string( storm_time_unix_sec, FILE_NAME_TIME_FORMAT ) ) print('Saving figure to: "{0:s}"...'.format(output_file_name)) pyplot.savefig( output_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close()