コード例 #1
0
    def _step(self, a):
        state, reward, done, meta = CameraRobotEnv._step(self, a)
        if self.flag_timeout <= 0:
            self._flag_reposition()
        self.flag_timeout -= 1

        return state, reward, done, meta
コード例 #2
0
    def _step(self, action):
        """Step forward the simulation, given the action.

        Args:
          action: A list of desired motor angles for eight motors.

        Returns:
          observations: The angles, velocities and torques of all motors.
          reward: The reward for the current state-action pair.
          done: Whether the episode has ended.
          info: A dictionary that stores diagnostic information.

        Raises:
          ValueError: The action dimension is not the same as the number of motors.
          ValueError: The magnitude of actions is out of bounds.
        """
        #print("Env apply raw action", action)
        action = self._transform_action_to_motor_command(action)
        #print("Env apply action", action)
    
        #for _ in range(self._action_repeat):
        #  self.robot.ApplyAction(action)
        #  pybullet.stepSimulation()
        for i in range(len(self.Amax)):
            if action[i] > self.Amax[i]:
                self.Amax[i] = action[i]
        #print("Action max", self.Amax)
        for _ in range(self.action_repeat):
            state = CameraRobotEnv._step(self, action)
        return state
コード例 #3
0
    def _step(self, a):
        state, reward, done, meta = CameraRobotEnv._step(self, a)
        if self.flag_timeout <= 0 or (self.flag_timeout < 225
                                      and self.robot.walk_target_dist < 0.4):
            if self.robot.walk_target_dist < 0.4:
                self.waypoint = 1
            self._flag_reposition()
        self.flag_timeout -= 1

        depth_size = 16
        if "depth" in self.config["output"]:
            depth_obs = self.get_observations()["depth"]
            x_start = int(self.windowsz / 2 - depth_size)
            x_end = int(self.windowsz / 2 + depth_size)
            y_start = int(self.windowsz / 2 - depth_size)
            y_end = int(self.windowsz / 2 + depth_size)
            self.obstacle_dist = (np.mean(depth_obs[x_start:x_end,
                                                    y_start:y_end, -1]))

        # state, reward, done, meta = CameraRobotEnv._step(self, a)
        # if self.flag_timeout <= 0 or (self.flag_timeout < FLAG_LIMIT and self.robot.walk_target_dist < 0.8):
        #    self._flag_reposition()
        # self.flag_timeout -= 1

        debug = 0
        if debug:
            print(
                "Frame: {}, FlagTimeOut: {}, Reward: {:.3f}, Distance: {:.3f}, "
                .format(self.nframe, self.flag_timeout, reward,
                        self.robot.walk_target_dist), done)

        return state, reward, done, meta
コード例 #4
0
    def _step(self, a):
        state, reward, done, meta = CameraRobotEnv._step(self, a)
        if self.flag_timeout <= 0 or (self.flag_timeout < 225
                                      and self.robot.walk_target_dist < 0.8):
            self._flag_reposition()
        self.flag_timeout -= 1

        self.obstacle_dist = (np.mean(state[16:48, 16:48, -1]))

        return state, reward, done, meta
コード例 #5
0
ファイル: husky_env.py プロジェクト: iapatil/GibsonEnv
    def _step(self, a):
        state, reward, done, meta = CameraRobotEnv._step(self, a)
        if self.flag_timeout <= 0 or (self.flag_timeout < 225 and self.robot.walk_target_dist < 0.8):
            self._flag_reposition()
        self.flag_timeout -= 1

        if "depth" in self.config["output"]:
            depth_obs = self.get_observations()["depth"]
            x_start = int(self.windowsz/2-16)
            x_end   = int(self.windowsz/2+16)
            y_start = int(self.windowsz/2-16)
            y_end   = int(self.windowsz/2+16)
            self.obstacle_dist = (np.mean(depth_obs[x_start:x_end, y_start:y_end, -1]))

        return state, reward, done, meta