コード例 #1
0
def test_turtlebot_position():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)

    turtlebot.set_position([0, 0, 5])

    nbody = p.getNumBodies()
    pos = turtlebot.get_position()
    s.disconnect()
    assert nbody == 5
    assert np.allclose(pos, np.array([0, 0, 5]))
コード例 #2
0
def main():
    config = parse_config(
        os.path.join(gibson2.example_config_path,
                     'turtlebot_demo.yaml'))  #robot configuration file path
    #    settings = MeshRendererSettings() #generating renderer settings object

    #generating simulator object
    #s = Simulator(mode='headless', #simulating without gui
    s = Simulator(
        mode='headless',  #simulating with gui
        #                  image_width=256, #robot camera pixel width
        #                  image_height=256, #robot camera pixel height
        #                  vertical_fov=40, #robot camera view angle (from floor to ceiling 40 degrees)
    )
    #rendering_settings=settings)

    #generating scene object
    scene = InteractiveIndoorScene(
        'Benevolence_1_int',  #scene name: Benevolence, floor number: 1, does it include interactive objects: yes (int). I pick Benevolence on purpose as it is the most memory friendly scene in the iGibson dataset. 
        build_graph=
        True,  #builds the connectivity graph over the given facedown traversibility map (floor plan)
        waypoint_resolution=
        0.1,  #radial distance between 2 consecutive waypoints (10 cm)
        pybullet_load_texture=True
    )  #do you want to include texture and material properties? (you need this for object interaction)

    s.import_ig_scene(scene)  #loading the scene object in the simulator object
    turtlebot = Turtlebot(config)  #generating the robot object
    s.import_robot(
        turtlebot)  #loading the robot object in the simulator object
    init_pos = turtlebot.get_position(
    )  #getting the initial position of the robot base [X:meters, Y:meters, Z:meters] (base: robot's main body. it may have links and the associated joints too. links and joints have positions and orientations as well.)
    init_or = turtlebot.get_rpy(
    )  #getting the initial Euler angles of the robot base [Roll: radians, Pitch: radians, Yaw: radians]

    #sampling random goal states in a desired room of the apartment
    np.random.seed(0)
    goal = scene.get_random_point_by_room_type('living_room')[
        1]  #sampling a random point in the living room

    rnd_path = scene.get_shortest_path(
        0, init_pos[0:2], goal[0:2], entire_path=True
    )[0]  #generate the "entire" a* path between the initial and goal nodes

    for i in range(len(rnd_path[0]) - 1):
        with Profiler(
                'Simulator step'
        ):  #iGibson simulation loop requieres this context manager

            rgb_camera = np.array(
                s.renderer.render_robot_cameras(modes='rgb')
            )  #probing RGB data, you can also probe rgbd or even optical flow if robot has that property in its config file (.yaml file)
            plt.imshow(rgb_camera[0, :, :, 3])  #calling sampled RGB data
            lidar = s.renderer.get_lidar_all()  #probing 360 degrees lidar data

            delta_pos = smt_path[:, i +
                                 1] - smt_path[:,
                                               i]  #direction vector between 2 consucutive waypoints
            delta_yaw = np.arctan2(
                delta_pos[1], delta_pos[0]
            )  #the yaw angle of the robot base while following the sampled bezier path
            delta_qua = e2q(
                init_or[0], init_or[1],
                delta_yaw)  #transforming robot base Euler angles to quaternion
            turtlebot.set_position_orientation([
                smt_path[0, i], smt_path[1, i], init_pos[2]
            ], delta_qua)  #setting the robot base position and the orientation
            s.step()  #proceed one step ahead in simulation time

    s.disconnect()
def main():
    config = parse_config(os.path.join(gibson2.example_config_path, 'turtlebot_demo.yaml')) #robot configuration file path
    settings = MeshRendererSettings() #generating renderer settings object
    
    #generating simulator object
    s = Simulator(mode='headless', #simulating without gui 
    #s = Simulator(mode='gui', #simulating with gui
                  image_width=64, #robot camera pixel width
                  image_height=48, #robot camera pixel height
                  vertical_fov=75, #robot camera view angle (from floor to ceiling 40 degrees)
                  rendering_settings=settings)
    
    #generating scene object
    scene = InteractiveIndoorScene('Benevolence_1_int', #scene name: Benevolence, floor number: 1, does it include interactive objects: yes (int). I pick Benevolence on purpose as it is the most memory friendly scene in the iGibson dataset. 
                              build_graph=True, #builds the connectivity graph over the given facedown traversibility map (floor plan)
                              waypoint_resolution=0.1, #radial distance between 2 consecutive waypoints (10 cm)
                              trav_map_resolution=0.1,
                              trav_map_erosion=2,
                              should_open_all_doors=True,
                              pybullet_load_texture=True) #do you want to include texture and material properties? (you need this for object interaction)

    s.import_ig_scene(scene) #loading the scene object in the simulator object
    turtlebot = Turtlebot(config) #generating the robot object
    s.import_robot(turtlebot) #loading the robot object in the simulator object
    init_pos = turtlebot.get_position() #getting the initial position of the robot base [X:meters, Y:meters, Z:meters] (base: robot's main body. it may have links and the associated joints too. links and joints have positions and orientations as well.)
    init_or = turtlebot.get_rpy() #getting the initial Euler angles of the robot base [Roll: radians, Pitch: radians, Yaw: radians]

    #sampling random goal states in a desired room of the apartment
    np.random.seed(0)

    encoder = keras.models.load_model('./CVAE_encoder')
    decoder = keras.models.load_model('./CVAE_decoder')

    for j in range(30):

        goal1 = scene.get_random_point_by_room_type('living_room')[1] #sampling random points in the living room
        goal2 = scene.get_random_point_by_room_type('living_room')[1]    
        goal3 = scene.get_random_point_by_room_type('living_room')[1]    
        goal4 = init_pos
    
        path1 = scene.get_shortest_path(0,init_pos[0:2],goal1[0:2],entire_path=True)[0] #generate the "entire" a* path between the initial, sub-goal, and terminal goal nodes
        path2 = scene.get_shortest_path(0,goal1[0:2],goal2[0:2],entire_path=True)[0] 
        path3 = scene.get_shortest_path(0,goal2[0:2],goal3[0:2],entire_path=True)[0] 
        path4 = scene.get_shortest_path(0,goal3[0:2],goal4[0:2],entire_path=True)[0] 
    
        rnd_path = np.append(path1,path2[1:],axis=0)
        rnd_path = np.append(rnd_path,path3[1:],axis=0)
        rnd_path = np.append(rnd_path,path4[1:],axis=0)

        #fitting a bezier curve through the a* waypoints and sampling 2000 points from that curve
        path_nodes = np.asfortranarray([rnd_path[:,0].tolist(),rnd_path[:,1].tolist()])
        smt_crv = bezier.Curve.from_nodes(path_nodes)
        s_vals = np.linspace(0,1,2000)
        smt_path = smt_crv.evaluate_multi(s_vals)
        
        #correcting the initial orientation of the robot
        delta_pos = smt_path[:,1] - smt_path[:,0] #direction vector between 2 consecutive waypoints
        delta_yaw = np.arctan2(delta_pos[1],delta_pos[0]) #the yaw angle of the robot base while following the sampled bezier path
        delta_qua = e2q(init_or[0],init_or[1],delta_yaw) #transforming robot base Euler angles to quaternion
        turtlebot.set_position_orientation([smt_path[0,0],smt_path[1,0],init_pos[2]], delta_qua) #setting the robot base position and the orientation

        episode_path = os.getcwd() + '/episodes/episode_' + str(j).zfill(2) #path of the new episode folder
        #os.makedirs(episode_path) #creating a new folder for the episode
     
        gtrth_pth_str = episode_path + '/episode_' + str(j).zfill(2) + 'ground_truth_path.csv' #printing the ground truth path out
        #np.savetxt(gtrth_pth_str, np.atleast_2d(smt_path).T, delimiter=",")
       
        for i in range(len(smt_path[0])-1):
            with Profiler('Simulator step'): #iGibson simulation loop requieres this context manager
            
                rgb_camera = np.array(s.renderer.render_robot_cameras(modes='rgb')) #probing RGB data, you can also probe rgbd or even optical flow if robot has that property in its config file (.yaml file)
                robot_img = rgb_camera[0,:,:,0] #transforming the RGB probe to uint8 format (PIL.Image.fromarray() accepts that format)
                encoded = encoder.predict(np.expand_dims(robot_img, axis=0))
                decoded = decoder.predict(encoded[0])
                robot_img = decoded[0,:,:,0]
                robot_img = robot_img.astype('uint8')
                robot_img = Image.fromarray(robot_img)
                img_str = './iGib_recons' + '/episode_' + str(j).zfill(2) + '_frame_' + str(i).zfill(5) + '.jpeg'
                robot_img.save(img_str)
                #lidar = s.renderer.get_lidar_all() #probing 360 degrees lidar data

                delta_pos = smt_path[:,i+1] - smt_path[:,i] #direction vector between 2 consecutive waypoints
                delta_yaw = np.arctan2(delta_pos[1],delta_pos[0]) #the yaw angle of the robot base while following the sampled bezier path
                delta_qua = e2q(init_or[0],init_or[1],delta_yaw) #transforming robot base Euler angles to quaternion
                turtlebot.set_position_orientation([smt_path[0,i],smt_path[1,i],init_pos[2]], delta_qua) #setting the robot base position and the orientation
		velcmd1, velcmd2 = PID_path_track(delta_pos, delta_qua)
                turtlebot.set_motor_velocity([velcmd1,velcmd2])

                s.step() #proceed one step ahead in simulation time
    

    s.disconnect()