コード例 #1
0
def test_consistent_merge():
    """ Test that merge() calls do not modify the argument sketch.
    """
    s1 = GKArray(test_eps)
    s2 = GKArray(test_eps)
    d = Normal(100)
    for v in d.data:
        s1.add(v)
    s1.merge(s2)
    # s2 is still empty
    np.testing.assert_equal(s2.num_values, 0)

    d = Normal(50)
    for v in d.data:
        s2.add(v)

    s2_summary = [s2.quantile(q) for q in test_quantiles]+ [s2.sum, s2.avg, s2.num_values]
    s1.merge(s2)
    d = Normal(10)
    for v in d.data:
        s1.add(v)
    # changes to s1 does not affect s2 after merge
    s2_summary = [s2.quantile(q) for q in test_quantiles] + [s2.sum, s2.avg, s2.num_values]
    np.testing.assert_almost_equal([s2.quantile(q) for q in test_quantiles] + [s2.sum, s2.avg, s2.num_values],
        s2_summary)

    s3 = GKArray(test_eps)
    s3.merge(s2)
    # merging to an empty sketch does not change s2
    np.testing.assert_almost_equal([s2.quantile(q) for q in test_quantiles] + [s2.sum, s2.avg, s2.num_values],
        s2_summary)
コード例 #2
0
def test_merge_equal():
    parameters = [(35, 1), (1, 3), (15, 2), (40, 0.5)]
    for n in test_sizes:
        d = EmptyDataset(0)
        s = GKArray(test_eps)
        for params in parameters:
            generator = Normal.from_params(params[0], params[1], n)
            sketch = GKArray(test_eps)
            for v in generator.data:
                sketch.add(v)
                d.add(v)
            s.merge(sketch)
        evaluate_sketch_accuracy(s, d, 2*s.eps)
コード例 #3
0
def test_merge_mixed():
    ntests = 20
    datasets = [Normal, Exponential, Laplace, Bimodal]
    for i in range(ntests):
        d = EmptyDataset(0)
        s = GKArray(test_eps)
        for dataset in datasets:
            generator = dataset(np.random.randint(0, 500))
            sketch = GKArray(test_eps)
            for v in generator.data:
                sketch.add(v)
                d.add(v)
            s.merge(sketch)
        evaluate_sketch_accuracy(s, d, 2*s.eps)
コード例 #4
0
def test_merge_unequal():
    ntests = 20
    for i in range(ntests):
        for n in test_sizes:
            d = Lognormal(n)
            s1 = GKArray(test_eps)
            s2 = GKArray(test_eps)
            for v in d.data:
                if np.random.random() > 0.7:
                    s1.add(v)
                else:
                    s2.add(v)
            s1.merge(s2)
            evaluate_sketch_accuracy(s1, d, 2*s1.eps)
コード例 #5
0
def test_constant():
    for n in test_sizes:
        data = Constant(n)
        sketch = GKArray(test_eps)
        for v in data.data:
            sketch.add(v)
        for q in test_quantiles:
            np.testing.assert_equal(sketch.quantile(q), 42)
コード例 #6
0
def test_distributions():
    for dataset in datasets:
        for n in test_sizes:
            data = dataset(n)
            sketch = GKArray(test_eps)
            for v in data.data:
                sketch.add(v)
            evaluate_sketch_accuracy(sketch, data, sketch.eps)