コード例 #1
0
def clip_glacier_with_terminus(line):
    """
    Clip glacier extent with a terminus.
    """
    gpoly = shapely.geometry.Polygon(shell=Glacier())
    # Extend western edge past polygon boundary
    wpoint = shapely.geometry.Point(line[0])
    west_snaps = shapely.ops.nearest_points(wpoint, gpoly.exterior)
    if west_snaps[0] != west_snaps[1]:
        new_west = west_snaps[1].coords
        d = new_west - line[0]
        d /= np.linalg.norm(d)
        line = np.row_stack((new_west + d, line))
    # Extend eastern edge past polygon boundary
    epoint = shapely.geometry.Point(line[-1])
    east_snaps = shapely.ops.nearest_points(epoint, gpoly.exterior)
    if east_snaps[0] != east_snaps[1]:
        new_east = east_snaps[1].coords
        d = new_east - line[-1]
        d /= np.linalg.norm(d)
        line = np.row_stack((line, new_east + d))
    tline = shapely.geometry.LineString(line)
    # Split glacier at terminus
    splits = shapely.ops.split(gpoly, tline)
    if len(splits) < 2:
        raise ValueError('Glacier polygon not split by terminus')
    else:
        areas = [split.area for split in splits]
        return np.asarray(splits[np.argmax(areas)].exterior.coords)
コード例 #2
0
def select_repeat_tracks(runs):
    """
    Return Tracks composed of the best track for each initial point.

    Selects the track for each point that minimizes the temporal mean standard
    deviation for vx + vy, i.e. mean(sqrt(vx_sigma**2 + vy_sigma**2)).

    Arguments:
        runs (iterable): Tracks objects with identical point and time dimensions
    """
    # Compute metric for each track
    metric = np.row_stack([
        np.nanmean(np.sqrt(np.nansum(run.sigmas[..., 3:5]**2, axis=2)), axis=1)
        for run in runs
    ])
    # Choose run with the smallest metric
    selected = np.argmin(metric, axis=0)
    # Merge runs
    means = runs[0].means.copy()
    sigmas = runs[0].sigmas.copy()
    for i, run in enumerate(runs[1:], start=1):
        mask = selected == i
        means[mask, ...] = run.means[mask, ...]
        sigmas[mask, ...] = run.sigmas[mask, ...]
    return glimpse.Tracks(datetimes=runs[0].datetimes,
                          means=means,
                          sigmas=sigmas)
コード例 #3
0
 cam_args = cg.load_calibrations(image,
     station_estimate=True, station=True, merge=True, file_errors=False)
 img = glimpse.Image(img_path, cam=cam_args)
 img.cam.resize(img_size)
 # Select nearest dem and ortho
 img_date = datetime.datetime.strptime(cg.parse_image_path(image)['date_str'], '%Y%m%d')
 i_dem = np.argmin(np.abs(np.asarray(dem_dates) - img_date))
 i_ortho = np.argmin(np.abs(np.asarray(ortho_dates) - img_date))
 dem_path = dem_paths[i_dem]
 ortho_path = ortho_paths[i_ortho]
 # Load raster metadata
 dem_grid = glimpse.Grid.read(dem_path, d=grid_size)
 ortho_grid = glimpse.Grid.read(ortho_path, d=grid_size)
 # Intersect bounding boxes
 cam_box = img.cam.viewbox(50e3)[[0, 1, 3, 4]]
 box = glimpse.helpers.intersect_boxes(np.row_stack((
     cam_box, dem_grid.box2d, ortho_grid.box2d)))
 # Read dem and ortho
 dem = glimpse.Raster.read(dem_path, xlim=box[0::2], ylim=box[1::2], d=grid_size)
 dem.crop(zlim=(0.1, np.inf))
 radius = circle_radius.get(image, circle_radius_default)
 dem.fill_circle(center=img.cam.xyz, radius=radius)
 nbands = gdal.Open(ortho_path).RasterCount
 bands = []
 for i in range(nbands):
     bands.append(glimpse.Raster.read(ortho_path, band=i + 1, d=grid_size,
         xlim=box[0::2], ylim=box[1::2]).Z)
 orthoZ = np.dstack(bands).astype(float)
 if not color:
     orthoZ = np.atleast_3d(glimpse.helpers.rgb_to_gray(orthoZ))
 orthoZ[orthoZ == 0] = np.nan
 # HACK: Clip dem and ortho to same size relative to x, y min
コード例 #4
0
                         services=services,
                         snap=SNAP,
                         use_exif=False,
                         service_exif=True,
                         anchors=True,
                         viewdir=True,
                         viewdir_as_anchor=True)
 # Keep only oriented images
 images = np.array([img for img in images if img.anchor])
 # Write animation(s)
 # HACK: Split at camera changes to use observer.animate()
 # HACK: Use k1 to quickly differentiate between cameras
 ks = np.array([img.cam.k[0] for img in images])
 for k in np.unique(ks):
     idx = np.where(ks == k)[0]
     sizes = np.row_stack([img.cam.imgsz for img in images[idx]])
     unique_sizes = np.unique(sizes, axis=0)
     if len(unique_sizes) > 1:
         # Standardize image sizes
         size = unique_sizes.min(axis=0)
         not_size = np.any(sizes != size, axis=1)
         f = images[~not_size][0].cam.f
         for img in images[not_size]:
             img.cam.resize(size, force=True)
             # HACK: Fix focal length rounding errors
             if any(img.cam.f - f > 0.1):
                 raise ValueError('Focal lengths cannot be reconciled')
             img.cam.f = f
     observer = glimpse.Observer(images[idx], cache=False).subset(snap=snap)
     path = os.path.join(
         'viewdirs-animations',
コード例 #5
0
     bw = glimpse.helpers.rgb_to_gray(img.read()).astype(np.uint8)
     img.write(path=path, I=clahe.apply(bw))
 # Select nearest dem and ortho
 img_date = datetime.datetime.strptime(
     cg.parse_image_path(image)['date_str'], '%Y%m%d')
 i_dem = np.argmin(np.abs(np.asarray(dem_dates) - img_date))
 i_ortho = np.argmin(np.abs(np.asarray(ortho_dates) - img_date))
 dem_path = dem_paths[i_dem]
 ortho_path = ortho_paths[i_ortho]
 # Load raster metadata
 dem_grid = glimpse.Grid.read(dem_path, d=grid_size)
 ortho_grid = glimpse.Grid.read(ortho_path, d=grid_size)
 # Intersect bounding boxes
 cam_box = img.cam.viewbox(50e3)[[0, 1, 3, 4]]
 box = glimpse.helpers.intersect_boxes(
     np.row_stack((cam_box, dem_grid.box2d, ortho_grid.box2d)))
 # Read dem and ortho
 dem = glimpse.Raster.read(dem_path,
                           xlim=box[0::2],
                           ylim=box[1::2],
                           d=grid_size)
 dem.crop(zlim=(0.1, np.inf))
 radius = circle_radius.get(image, circle_radius_default)
 dem.fill_circle(center=img.cam.xyz, radius=radius)
 nbands = gdal.Open(ortho_path).RasterCount
 bands = []
 for i in range(nbands):
     bands.append(
         glimpse.Raster.read(ortho_path,
                             band=i + 1,
                             d=grid_size,