def jacobiano2(theta,hOrg,hP,xe,leg): #----------------------------------------------------------- #c�lculo das derivadas para cada vari�vel de controle #---------------------------------------------------------- z = np.zeros((8,1)) thetar = theta[:,0].reshape((6,1)) thetal = theta[:,1].reshape((6,1)) glob = GlobalVariables() L1 = glob.getL1() L2 = glob.getL2() hpi = glob.getHpi() MDH = glob.getMDH() #hCoM_O0_rightLeg = dualQuatDH(hpi,-L2,-L1,0,0) #transformação do sist de coordenadas do centro de massa para a origem 0 da perna direita #hCoM_O0_leftLeg = dualQuatDH(hpi,-L2, L1,0,0) #transformação do sist de coordenadas do centro de massa para a origem 0 da perna esquerda #perna = 1 (perna direita) #perna = 0 (perna esquerda) #hB = dualQuatMult(hOrg,hP) #hB_O6a = dualQuatMult(hOrg,hP) #hB = [1 0 0 0 0 0 0 0]' ##################################j1################################## #h = dualQuatMult(hB,KinematicModel(MDH,thetar,6,0)) if leg == 0: #right leg h = dualQuatMult(hP,KinematicModel(MDH,thetar,6,0)) #da base global até a junta 6 #h = [1 0 0 0 0 0 0 0]' #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j0 = dualQuatMult(z,xe) ##################################j1################################## h = dualQuatMult(hP,KinematicModel(MDH,thetar,5,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j1 = dualQuatMult(z,xe) ##################################j2################################## h = dualQuatMult(hP,KinematicModel(MDH,thetar,4,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j2 = dualQuatMult(z,xe) ##################################j3################################## h = dualQuatMult(hP,KinematicModel(MDH,thetar,3,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j3 = dualQuatMult(z,xe) ##################################j4################################## h = dualQuatMult(hP,KinematicModel(MDH,thetar,2,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j4 = dualQuatMult(z,xe) ##################################j5################################## h = dualQuatMult(hP,KinematicModel(MDH,thetar,1,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j5 = dualQuatMult(z,xe) else: h = dualQuatMult(hP,KinematicModel(MDH,thetal,6,0)) #da base global até a junta 6 #h = [1 0 0 0 0 0 0 0]' #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j0 = dualQuatMult(z,xe) ##################################j1################################## h = dualQuatMult(hP,KinematicModel(MDH,thetal,5,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j1 = dualQuatMult(z,xe) ##################################j2################################## h = dualQuatMult(hP,KinematicModel(MDH,thetal,4,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j2 = dualQuatMult(z,xe) ##################################j3################################## h = dualQuatMult(hP,KinematicModel(MDH,thetal,3,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j3 = dualQuatMult(z,xe) ##################################j4################################## h = dualQuatMult(hP,KinematicModel(MDH,thetal,2,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j4 = dualQuatMult(z,xe) ##################################j5################################## h = dualQuatMult(hP,KinematicModel(MDH,thetal,1,0)) #z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 #z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j5 = dualQuatMult(z,xe) jac = np.concatenate((-j5, -j4, -j3, -j2, -j1, -j0),axis=1) return jac
def jacobianoPes(theta,ha,xe,leg): #----------------------------------------------------------- #c�lculo das derivadas para cada vari�vel de controle #---------------------------------------------------------- glob = GlobalVariables() MDH = glob.getMDH() hpi = glob.getHpi() L1 = glob.getL1() L2 = glob.getL2() thetal = theta[:,1].reshape((6,1)) thetar = theta[:,0].reshape((6,1)) z = np.zeros((8,1)) #transforma��es da origem para a origem #da configura��o inicial das 2 pernas hCoM_O0_rightLeg = dualQuatDH(hpi,-L2,-L1,0,0) #transformação do sist de coordenadas do centro de massa para a origem 0 da perna direita hCoM_O0_leftLeg = dualQuatDH(hpi,-L2, L1,0,0) #transformação do sist de coord. do CoM para a origem 0 da perna esquerda if leg == 1: #left leg hB_O6a = dualQuatMult(ha,hCoM_O0_leftLeg) h = hB_O6a #h = [1 0 0 0 0 0 0 0]' z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j0 = dualQuatMult(z,xe) ##################################j1################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetal,1,1)) #h = [1 0 0 0 0 0 0 0]' z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j1 = dualQuatMult(z,xe) ##################################j2################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetal,2,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j2 = dualQuatMult(z,xe) ##################################j3################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetal,3,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j3 = dualQuatMult(z,xe) ##################################j4################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetal,4,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j4 = dualQuatMult(z,xe) ##################################j5################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetal,5,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j5 = dualQuatMult(z,xe) else: hB_O6a = dualQuatMult(ha,hCoM_O0_rightLeg) h = hB_O6a #h = [1 0 0 0 0 0 0 0]' z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j0 = dualQuatMult(z,xe) ##################################j1################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetar,1,1)) #h = [1 0 0 0 0 0 0 0]' z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j1 = dualQuatMult(z,xe) ##################################j2################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetar,2,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j2 = dualQuatMult(z,xe) ##################################j3################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetar,3,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j3 = dualQuatMult(z,xe) ##################################j4################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetar,4,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j4 = dualQuatMult(z,xe) ##################################j5################################## h = dualQuatMult(hB_O6a,KinematicModel(MDH,thetar,5,1)) z[0,0] = 0 z[1,0] = h[1,0]*h[3,0] + h[0,0]*h[2,0] z[2,0] = h[2,0]*h[3,0] - h[0,0]*h[1,0] z[3,0] = (h[3,0]**2 - h[2,0]**2 - h[1,0]**2 + h[0,0]**2)/2 z[4,0] = 0 z[5,0] = h[1,0]*h[7,0] + h[5,0]*h[3,0] + h[0,0]*h[6,0] + h[4,0]*h[2,0] z[6,0] = h[2,0]*h[7,0] + h[6,0]*h[3,0] - h[0,0]*h[5,0] - h[4,0]*h[1,0] z[7,0] = h[3,0]*h[7,0] - h[2,0]*h[6,0] - h[1,0]*h[5,0] + h[0,0]*h[4,0] j5 = dualQuatMult(z,xe) jac = np.concatenate((j0, j1, j2, j3, j4, j5),axis = 1) return jac
def fase3(ha, ha2, trajCoM, ind, trajPB, theta, t1, vecGanho): # #global hpi, L1, L2, L3, L4, L5, height, MDH, hEdo # glob = GlobalVariables() # hEdo = glob.getHEDO() # L1 = glob.getL1() # #L2 = glob.getL2() # #L3 = glob.getL3() # #L4 = glob.getL4() # #L5 = glob.getL5() # height = glob.getHeight() # MDH = glob.getMDH() # hpi = glob.getHpi() # dt = hEdo #dt é o tempo da solução da equação Edo # hOrg = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape((8,1)) #posição da base # T = np.size(trajCoM,0) # #T = 500; # #t = 1:1:T; # tempo = (T-1)*dt # #tempo = (T)*dt # #matrizes auxiliares # Mhd = np.zeros((8,T)) # Mha = np.zeros((8,T)) # Mdhd = np.zeros((8,T)) # Mtheta = np.zeros((6,T)) # mhd = np.zeros((8,1)) # mdhd = np.zeros((8,1)) # mhd2 = np.zeros((8,1)) # mdhd2 = np.zeros((8,1)) # mhdPlus = np.zeros((8,1)) # mdhdPlus = np.zeros((8,1)) # Mhd2 = np.zeros((8,T)) # Mha2 = np.zeros((8,T)) # Mdhd2= np.zeros((8,T)) # Mtheta2 = np.zeros((6,T)) # angle = np.zeros(T) # angled = np.zeros(T) # angle2 = np.zeros(T) # angled2 = np.zeros(T) # Pos = np.zeros((3,T)) # Posd = np.zeros((3,T)) # Pos2 = np.zeros((3,T)) # Posd2 = np.zeros((3,T)) # #calculo de Mhd - matriz de hd # r = np.array([1, 0, 0, 0]).reshape(4,1) # #p = [0 0 0 0]'; # p = np.array([0, 0, -L1, -height]).reshape((4,1)) # hB1 = transformacao(p,r) #transformação base robô # for i in range(0,T,1): # p = np.array([0, trajCoM[i,0], trajCoM[i,1], trajCoM[i,2]]).reshape((4,1)) # r = np.array([1, 0, 0, 0]).reshape((4,1)) # hd = transformacao(p,r) # hd = dualQuatMult(hB1,hd) # mhd = hd # #for j in range(8): # Mhd[:,i] = mhd[:,0] # if i <ind: # p = np.array([0, trajPB[i,0], trajPB[i,1], trajPB[i,2]]).reshape((4,1)) # n = np.array([0, 1, 0]) # angulo = np.pi/2 # realR = np.array([mt.cos(angulo/2)]) # imagR = mt.sin(angulo/2)*n # rb = np.concatenate((realR,imagR), axis = 0).reshape((4,1)) # hd = transformacao(p,rb) # hd = dualQuatMult(hB1,hd) # mhd2 = hd # #for j in range(8): # Mhd2[:,i] = mhd2[:,0] # else: # #for j in range(8): # Mhd2[:,i] = Mhd2[:,ind-1] # hP = ha2 # #Mdhd[:,0] = (Mhd[:,0] - Mhd[:,0])*(1/dt) # #Mdhd2[:,0] = (Mhd2[:,0] - Mhd2[:,0])*(1/dt) # for i in range(1,T,1): # #for j in range(8): # Mdhd[:,i] = (Mhd[:,i] - Mhd[:,i-1])*(1/dt) # #Mdhd[:,i] = mdhd[:,0] # Mdhd2[:,0] = (Mhd2[:,i]- Mhd2[:,i-1])*(1/dt) # #Mdhd2[:,i] = mdhd2[:,0] # ################################## # #inicio do codigo # #LQR # ganhoS = vecGanho[0,0] # ganhoQ = vecGanho[1,0] # ganhoR = vecGanho[2,0] # #controlador proporcional # ganhoK2 = vecGanho[3,0] # K2 = ganhoK2*np.eye(8) # #ganho P-FF # S = ganhoS*np.eye(8) # Q = ganhoQ*np.eye(8) # R = ganhoR*np.eye(8) # Rinv = np.linalg.inv(R) # C8 = np.diag([1, -1, -1, -1, 1, -1, -1, -1]) # #iniciar condições finais esperadas para P e E # Pf = S # Ef = np.array([0, 0, 0, 0, 0, 0, 0, 0]).reshape((8,1)) # P = Pf # MP2 = np.zeros((8,T)) # MP2 = np.zeros((8,8,T)) # for j in range(8): # for k in range(8): # MP2[j,k,T-1] = P[j,k] # E = Ef # ME2 = np.zeros((8,T)) # #for j in range(8): # ME2[:,T-1] = E[:,0] # for i in range(T-2,0,-1): # #for j in range(8): # mhdPlus[:,0] = Mhd[:,i+1] # mdhdPlus[:,0] = Mdhd[:,i+1] # mhd[:,0] = Mhd[:,i] # mdhd[:,0] = Mdhd[:,i] # aux = dualQuatMult(dualQuatConj(Mhd[:,i+1].reshape((8,1))),Mdhd[:,i+1].reshape((8,1))) # A = dualHamiltonOp(aux,0) # c = -aux # #prod2 = np.dot(P,Rinv) # P = P -(-P@A -A.T@P + P@Rinv@P - Q)*dt # #MP2[:,i] = P[:] # for j in range(8): # for k in range(8): # MP2[j,k,i] = P[j,k] # E = E - ((-1)*(A.T)@E + P@Rinv@E - P@c)*dt # #for j in range(8): # ME2[:,i] = E[:,0] # for i in range(0, T, 1): # #tic # #Controlador LQR para O CoM # #calculo de A e c # #for j in range(8): # mhd[:,0] = Mhd[:,i] # mdhd[:,0] = Mdhd[:,i] # mhd2[:,0] = Mhd2[:,i] # mdhd2[:,0] = Mdhd2[:,i] # aux = dualQuatMult(dualQuatConj(Mhd[:,i].reshape((8,1))),Mdhd[:,i].reshape((8,1))) # A = dualHamiltonOp(aux,0) # c = -1*np.transpose(aux) # #inicio do controlador # #Ja = jacobianoCinematica(theta,hOrg,hP,1,1) # xe = KinematicModel(MDH,theta,6,0) # Ja = jacobiano2(theta,hOrg,hP,xe,0) # #calculo de P e E # #calculo de N # Hd = dualHamiltonOp(mhd,0) # #prod3 = np.dot(Hd,C8) # N = Hd@C8@Ja # #pseudo inversa de N # Np = np.linalg.pinv(N) # #calculo do erro # e = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape((8,1)) - dualQuatMult(dualQuatConj(ha),Mhd[:,i].reshape((8,1))) # #calculo de P e E # #for j in range(8): # E[:,0] = ME2[:,i] # #P = np.reshape(MP2[:,i],np.shape(A)) # # Pxe= np.dot(P,e) # # NpxRinv= np.dot(Np,Rinv) # do = Np@Rinv@(P@e + E) # #calculo do o deseja # od = (do*dt)/2 # for j in range(6): # theta[j,0] = theta[j,0] + od[j,0] # for j in range(0,6,1): # if abs(theta[j,0]) > hpi: # theta[j,0] = np.sign(theta[j,0])*hpi # ha = kinematicRobo(theta,hOrg,hP,1,1) # #plotar os dados # for j in range(8): # Mha[j,i] = ha[j,0] # #posição # pos = getPositionDualQuat(ha) # posd = getPositionDualQuat(Mhd[:,i].reshape((8,1))) # for j in range(3): # Pos[j,i] = pos[j,0] # Posd[j,i] = posd[j,0] # #orientação # ra = getRotationDualQuat(ha) # rd = getRotationDualQuat(mhd) # if ra[0,0] > 1: # ra[0,0] = 1 # co = mt.acos(ra[0,0]) # angle[i] = co # co = mt.acos(rd[0,0]) # angled[i] = co # for j in range(6): # Mtheta[j,i] = theta[j,0] # #controlador 2 # #calculo de A e c # aux2 = dualQuatMult(dualQuatConj(mhd2),mdhd2) # #A2 = dualHamiltonOp(aux2,0) # c = -np.transpose(aux2) # #inicio do controlador # #Ja2 = jacobianoCinematica(theta,hOrg,hP,1,0) # xe2 = kinematicRobo(theta,hOrg,hP,1,0) # Ja2 = jacobianoPes(theta,ha,xe2,1) # #calculo de P e E # #calculo de N # Hd2 = dualHamiltonOp(mhd2,0) # #prod1= np.dot(Hd2,C8) # N2 = Hd2@C8@Ja2 # #pseudo inversa de N # Np2 = np.linalg.pinv(N2) # #calculo do erro # e2 = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape((8,1)) - dualQuatMult(dualQuatConj(ha2),mhd2) # vec2 = dualQuatMult(dualQuatConj(ha2),mdhd2) # # # #produto= np.dot(K2,e2-vec2) # do2 = Np2@(K2@e2-vec2) # od2 = (do2*dt)/2 # theta[:,1] = theta[:,1] + od2[:,0] # ha2 = kinematicRobo(theta,hOrg,hP,1,0) # #plotar os dados # #for j in range(8): # Mha2[:,i] = ha2[:,0] # #posição # pos2 = getPositionDualQuat(ha2) # posd2 = getPositionDualQuat(mhd2) # for j in range(3): # Pos2[j,i] = pos2[j,0] # Posd2[j,i] = posd2[j,0] # #orientação # ra = getRotationDualQuat(ha2) # rd = getRotationDualQuat(mhd2) # co = mt.acos(ra[0,0]) # angle2[i] = co # co = mt.acos(rd[0,0]) # angled2[i] = co # #for j in range(6): # Mtheta2[:,i] = theta[:,1] # #mostrar no console o andamento do metódo # #msg = sprintf('#d de #d | tempo: #f',i,T,toc) # #disp(msg) # #hold on # plotGraficosControle(t1,dt,T,Pos,Posd,angle,angled,Mha,Mhd,Mtheta,Pos2,Posd2,angle2,angled2,Mha2,Mhd2,Mtheta2,'b','r') # return ha,ha2,theta,tempo, Mtheta, Mtheta2 #global hpi, L1, L2, L3, L4, L5, height, MDH, hEdo glob = GlobalVariables() hEdo = glob.getHEDO() L1 = glob.getL1() #L2 = glob.getL2() #L3 = glob.getL3() #L4 = glob.getL4() #L5 = glob.getL5() height = glob.getHeight() MDH = glob.getMDH() hpi = glob.getHpi() dt = hEdo #dt é o tempo da solução da equação Edo hOrg = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape((8, 1)) #posição da base T = np.size(trajCoM, 0) #T = 500; #t = 1:1:T; tempo = (T - 1) * dt #tempo = (T)*dt #matrizes auxiliares Mhd = np.zeros((8, T)) Mha = np.zeros((8, T)) Mdhd = np.zeros((8, T)) Mtheta = np.zeros((6, T)) mhd = np.zeros((8, 1)) mdhd = np.zeros((8, 1)) mhd2 = np.zeros((8, 1)) mdhd2 = np.zeros((8, 1)) mhdPlus = np.zeros((8, 1)) mdhdPlus = np.zeros((8, 1)) Mhd2 = np.zeros((8, T)) Mha2 = np.zeros((8, T)) Mdhd2 = np.zeros((8, T)) Mtheta2 = np.zeros((6, T)) angle = np.zeros(T) angled = np.zeros(T) angle2 = np.zeros(T) angled2 = np.zeros(T) Pos = np.zeros((3, T)) Posd = np.zeros((3, T)) Pos2 = np.zeros((3, T)) Posd2 = np.zeros((3, T)) #calculo de Mhd - matriz de hd r = np.array([1, 0, 0, 0]).reshape(4, 1) #p = [0 0 0 0]'; p = np.array([0, 0, -L1, -height]).reshape((4, 1)) hB1 = transformacao(p, r) #transformação base robô for i in range(0, T, 1): p = np.array([0, trajCoM[i, 0], trajCoM[i, 1], trajCoM[i, 2]]).reshape( (4, 1)) r = np.array([1, 0, 0, 0]).reshape((4, 1)) hd = transformacao(p, r) hd = dualQuatMult(hB1, hd) mhd = hd #for j in range(8): Mhd[:, i] = mhd[:, 0] if i < ind: p = np.array([0, trajPB[i, 0], trajPB[i, 1], trajPB[i, 2]]).reshape((4, 1)) n = np.array([0, 1, 0]) angulo = np.pi / 2 realR = np.array([mt.cos(angulo / 2)]) imagR = mt.sin(angulo / 2) * n rb = np.concatenate((realR, imagR), axis=0).reshape((4, 1)) hd = transformacao(p, rb) hd = dualQuatMult(hB1, hd) mhd2 = hd #for j in range(8): Mhd2[:, i] = mhd2[:, 0] else: #for j in range(8): Mhd2[:, i] = Mhd2[:, ind - 1] hP = ha2 #Mdhd[:,0] = (Mhd[:,0] - Mhd[:,0])*(1/dt) #Mdhd2[:,0] = (Mhd2[:,0] - Mhd2[:,0])*(1/dt) for i in range(1, T, 1): #for j in range(8): Mdhd[:, i] = (Mhd[:, i] - Mhd[:, i - 1]) * (1 / dt) #Mdhd[:,i] = mdhd[:,0] Mdhd2[:, i] = (Mhd2[:, i] - Mhd2[:, i - 1]) * (1 / dt) #Mdhd2[:,i] = mdhd2[:,0] ################################## #inicio do codigo #LQR ganhoS = vecGanho[0, 0] ganhoQ = vecGanho[1, 0] ganhoR = vecGanho[2, 0] #controlador proporcional ganhoK2 = vecGanho[3, 0] K2 = ganhoK2 * np.eye(8) #ganho P-FF S = ganhoS * np.eye(8) Q = ganhoQ * np.eye(8) R = ganhoR * np.eye(8) Rinv = np.linalg.inv(R) C8 = np.diag([1, -1, -1, -1, 1, -1, -1, -1]) #iniciar condições finais esperadas para P e E Pf = S Ef = np.array([0, 0, 0, 0, 0, 0, 0, 0]).reshape((8, 1)) P = Pf MP2 = np.zeros((8, T)) MP2 = np.zeros((8, 8, T)) for j in range(8): for k in range(8): MP2[j, k, T - 1] = P[j, k] E = Ef ME2 = np.zeros((8, T)) #for j in range(8): ME2[:, T - 1] = E[:, 0] for i in range(T - 2, -1, -1): #for j in range(8): mhdPlus[:, 0] = Mhd[:, i + 1] mdhdPlus[:, 0] = Mdhd[:, i + 1] mhd[:, 0] = Mhd[:, i] mdhd[:, 0] = Mdhd[:, i] aux = dualQuatMult(dualQuatConj(Mhd[:, i + 1].reshape((8, 1))), Mdhd[:, i + 1].reshape((8, 1))) A = dualHamiltonOp(aux, 0) c = -aux #prod2 = np.dot(P,Rinv) P = P - (-P @ A - A.T @ P + P @ Rinv @ P - Q) * dt #MP2[:,i] = P[:] for j in range(8): for k in range(8): MP2[j, k, i] = P[j, k] E = E - ((-1) * (A.T) @ E + P @ Rinv @ E - P @ c) * dt #for j in range(8): ME2[:, i] = E[:, 0] for i in range(0, T, 1): #tic #Controlador LQR para O CoM #calculo de A e c #for j in range(8): mhd[:, 0] = Mhd[:, i] mdhd[:, 0] = Mdhd[:, i] mhd2[:, 0] = Mhd2[:, i] mdhd2[:, 0] = Mdhd2[:, i] aux = dualQuatMult(dualQuatConj(Mhd[:, i].reshape((8, 1))), Mdhd[:, i].reshape((8, 1))) A = dualHamiltonOp(aux, 0) c = -1 * np.transpose(aux) #inicio do controlador #Ja = jacobianoCinematica(theta,hOrg,hP,1,1) xe = KinematicModel(MDH, theta, 6, 0) Ja = jacobiano2(theta, hOrg, hP, xe, 0) #calculo de P e E #calculo de N Hd = dualHamiltonOp(mhd, 0) #prod3 = np.dot(Hd,C8) N = Hd @ C8 @ Ja #pseudo inversa de N Np = np.linalg.pinv(N) #calculo do erro e = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape( (8, 1)) - dualQuatMult(dualQuatConj(ha), Mhd[:, i].reshape((8, 1))) #calculo de P e E #for j in range(8): E[:, 0] = ME2[:, i] P[:, :] = MP2[:, :, i].reshape((8, 8)) #P = np.reshape(MP2[:,i],np.shape(A)) # Pxe= np.dot(P,e) # NpxRinv= np.dot(Np,Rinv) do = Np @ Rinv @ (P @ e + E) #calculo do o deseja od = (do * dt) / 2 for j in range(6): theta[j, 0] = theta[j, 0] + od[j, 0] #for j in range(0,6,1): # if abs(theta[j,0]) > hpi: # theta[j,0] = np.sign(theta[j,0])*hpi ha = kinematicRobo(theta, hOrg, hP, 1, 1) #plotar os dados for j in range(8): Mha[j, i] = ha[j, 0] #posição pos = getPositionDualQuat(ha) posd = getPositionDualQuat(Mhd[:, i].reshape((8, 1))) for j in range(3): Pos[j, i] = pos[j, 0] Posd[j, i] = posd[j, 0] #orientação ra = getRotationDualQuat(ha) rd = getRotationDualQuat(mhd) co = mt.acos(ra[0, 0]) angle[i] = co co = mt.acos(rd[0, 0]) angled[i] = co for j in range(6): Mtheta[j, i] = theta[j, 0] #controlador 2 #calculo de A e c aux2 = dualQuatMult(dualQuatConj(mhd2), mdhd2) #A2 = dualHamiltonOp(aux2,0) c = -np.transpose(aux2) #inicio do controlador #Ja2 = jacobianoCinematica(theta,hOrg,hP,1,0) xe2 = kinematicRobo(theta, hOrg, hP, 1, 0) Ja2 = jacobianoPes(theta, ha, xe2, 1) #calculo de P e E #calculo de N Hd2 = dualHamiltonOp(mhd2, 0) #prod1= np.dot(Hd2,C8) N2 = Hd2 @ C8 @ Ja2 #pseudo inversa de N Np2 = np.linalg.pinv(N2) #calculo do erro e2 = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape( (8, 1)) - dualQuatMult(dualQuatConj(ha2), Mhd2[:, i].reshape( (8, 1))) vec2 = dualQuatMult(dualQuatConj(ha2), Mhd2[:, i].reshape((8, 1))) # #produto= np.dot(K2,e2-vec2) do2 = Np2 @ (K2 @ e2 - vec2) od2 = (do2 * dt) / 2 theta[:, 1] = theta[:, 1] + od2[:, 0] ha2 = kinematicRobo(theta, hOrg, hP, 1, 0) #plotar os dados #for j in range(8): Mha2[:, i] = ha2[:, 0] #posição pos2 = getPositionDualQuat(ha2) posd2 = getPositionDualQuat(Mhd2[:, i].reshape((8, 1))) for j in range(3): Pos2[j, i] = pos2[j, 0] Posd2[j, i] = posd2[j, 0] #orientação ra = getRotationDualQuat(ha2) rd = getRotationDualQuat(Mhd2[:, i].reshape((8, 1))) co = mt.acos(ra[0, 0]) angle2[i] = co co = mt.acos(rd[0, 0]) angled2[i] = co #for j in range(6): Mtheta2[:, i] = theta[:, 1] #mostrar no console o andamento do metódo #msg = sprintf('#d de #d | tempo: #f',i,T,toc) #disp(msg) #hold on plotGraficosControle(t1, dt, T, Pos, Posd, angle, angled, Mha, Mhd, Mtheta, Pos2, Posd2, angle2, angled2, Mha2, Mhd2, Mtheta2, 'b', 'r') return ha, ha2, theta, tempo, Mtheta, Mtheta2
def kinematicRobo(theta, hOrg, hP, tipo, CoM): #-------------------------------------- #Método para calcular o a cinemática direta #do robô utilizando quatérnio dual #height é a altura do robô #L1 é o tamanho do link da bacia #L2 é a altura da bacia até o primeiro motor #-------------------------------------- #variaveis globais----------------------------------------------------------------------- glob = GlobalVariables() #global hpi, L1, L2, height, MDH #se eu chamar essas variáveis em outro lugar do código, ele vai pegar esses valores? hpi = glob.getHpi() L1 = glob.getL1() L2 = glob.getL2() #height = glob.getHeight() MDH = glob.getMDH() #------------------------------------------------------------------------------------------------ # l = np.size(theta[:,0],0) # r = np.size(theta[:,1],0) # thetar = np.zeros((l,1)) # thetal = np.zeros((r,1)) thetar = theta[:, 0].reshape((6, 1)) thetal = theta[:, 1].reshape((6, 1)) # for i in range(r): # thetar[i,0] = theta[i,0] # for i in range(l): # thetal[i,0] = theta[i,1] # a3 = 6 # a4 = a3 # a5 = 2 #MDH = np.array([[0, 0, 0, np.pi/2], # do fixo pro 0 (sobre o motthetar1) # [-np.pi/2, 0, 0, -np.pi/2], # motthetar1 do frame 0 pro 1(sobre o motthetar2) # [0, 0, a3, 0], # motthetar2 do frame 1 pro 2(sobre o motthetar3) # [0, 0, a4, 0], # motthetar3 do frame 2 pro 3(sobre o motthetar4) # [0, 0, 0, np.pi/2], # motthetar4 do frame 3 pro 4(sobre o motthetar5) # [0, 0, a5, 0]]) # motthetar5 do frame 4 pro 5(sobre o motthetar6) #transformações da origem para a origem #da configuração inicial das 2 pernas hCoM_O0_rightLeg = dualQuatDH( hpi, -L2, -L1, 0, 0 ) #transformação do sist de coordenadas do centro de massa para a origem 0 da perna direita hCoM_O0_leftLeg = dualQuatDH( hpi, -L2, L1, 0, 0 ) #transformação do sist de coordenadas do centro de massa para a origem 0 da perna esquerda hB_O6a = dualQuatMult( hOrg, hP ) #transformação para auxiliar na localização do pé em contato com o chão if tipo == 1: #tipo = 1 significa que a perna direita está apoiada hO6_O0 = KinematicModel( MDH, thetar, 1, 0 ) #transformação do sistema de coordenadas do link O6 par ao link O0 (do início da perna para o pé) else: hO6_O0 = KinematicModel(MDH, thetal, 1, 0) hB_O0 = dualQuatMult( hB_O6a, hO6_O0 ) #representa a base ou sistema global (hOrg + hp), ou seja, do sistema base para o sistema O0 #transformação da base global para a base O0, depois de O0 para o CoM if tipo == 1: hB_CoM = dualQuatMult(hB_O0, dualQuatConj(hCoM_O0_rightLeg)) else: hB_CoM = dualQuatMult(hB_O0, dualQuatConj(hCoM_O0_leftLeg)) hr = hB_CoM #a função retornará a orientação do CoM (em relação à base global) if CoM == 0: #transformação da base O0 para O6 if tipo == 1: hB_O0 = dualQuatMult( hB_CoM, hCoM_O0_leftLeg ) #multiplica hB_CoM por hCoM_O0_leftLeg, para eliminar hCoM_O0_leftLeg conjugado hO0_O6 = KinematicModel(MDH, thetal, 6, 1) hr = dualQuatMult( hB_O0, hO0_O6) #posição do pé suspenso (nesse caso, o esquerdo) else: hB_O0 = dualQuatMult(hB_CoM, hCoM_O0_rightLeg) hO0_O6 = KinematicModel(MDH, thetar, 6, 1) hr = dualQuatMult(hB_O0, hO0_O6) return hr
def calculoMhd(trajCoM, theta, trajP, phase): glob = GlobalVariables() hEdo = glob.getHEDO() L1 = glob.getL1() height = glob.getHeight() #MDH = glob.getMDH() hpi = glob.getHpi() ind = np.size(trajP, 0) hOrg = np.array([[1], [0], [0], [0], [0], [0], [0], [0]]) #posição da base dt = hEdo #cacular posição atual do´pé n = np.array([0, 1, 0]) # n é o vetor diretor do quaternio thetab = hpi #parametro da função de caminhada que é igual a pi/2 realRb = np.array([np.cos(thetab / 2)]) rb = np.concatenate((realRb, np.sin(thetab / 2) * n), axis=0).reshape( (4, 1)) pb = np.array([[0], [0], [-L1], [-height]]) #base B para a base O6 (B é a perna em movimento) hB_O6 = transformacao(pb, rb) hP = dualQuatMult(hOrg, hB_O6) #dt é o tempo da solução da equação Edo e, ao mesmo tempo, o passo T = np.size(trajCoM, 0) #o tamanho de trajCoM = ind tempo = ( T - 1 ) * dt #o tempo é o produto da quantidade de iterações necessárias para calcular a trajetória do CoM #matrizes e vetores auxiliares Mhd = np.zeros((8, T)) Mha = np.zeros((8, T)) Mdhd = np.zeros((8, T)) Mtheta = np.zeros((6, T)) Mdhd = np.zeros((8, T)) Mhd2 = np.zeros((8, T)) Mdhd2 = np.zeros((8, T)) # Mhd2 = np.zeros((8,T)) # Mha2 = np.zeros((8,T)) # Mdhd2= np.zeros((8,T)) # Mtheta2 = np.zeros((6,T)) # angle = np.zeros(T) # angled = np.zeros(T) # angle2 = np.zeros(T) # angled2 = np.zeros(T) # Pos = np.zeros((3,T)) # Posd = np.zeros((3,T)) # Pos2 = np.zeros((3,T)) # Posd2 = np.zeros((3,T)) #calculo de Mhd - matriz de hd r = np.array([1, 0, 0, 0]).reshape((4, 1)) p = np.array([0, 0, -L1, -height]).reshape( (4, 1)) #height = L2 + L3 + L4 + L5 hB1 = transformacao(p, r) #transformação base robô for i in range(0, T, 1): p = np.array([0, trajCoM[i, 0], trajCoM[i, 1], trajCoM[i, 2]]).reshape( (4, 1)) r = np.array([1, 0, 0, 0]).reshape((4, 1)) hd = transformacao(p, r) hd = dualQuatMult(hB1, hd) Mhd[:, i] = hd[:, 0] #transformação da base até o centro de massa #se i<ind, o robô ainda não atingiu a posição de td, então a transformação é calculada em relação ao pé #quando o robô chega na fase de TD, a transformação é calculada em relação ao CoM if i < ind: p = np.array([0, trajP[i, 0], trajP[i, 1], trajP[i, 2]]).reshape( (4, 1)) n = np.array([0, 1, 0]) #angulo = mt.pi/2.0 #graus ou radianos????????????????????????????????????????????????????????????/ realRb = np.array([np.cos(thetab / 2)]) rb = np.concatenate((realRb, np.sin(thetab / 2) * n), axis=0).reshape((4, 1)) hd = transformacao(p, rb) #posição desejada hd = dualQuatMult(hB1, hd) #transformação da base até o pé Mhd2[:, i] = hd[:, 0] else: Mhd2[:, i] = Mhd2[:, ind - 1] #Mdhd[:,0] = (Mhd[:,0] - Mhd[:,0])*(1/dt) #não deveria ser i-1, no segundo Mhd??????????????????????????????????? #Mdhd2[:,0] = (Mhd2[:,0] - Mhd2[:,0])*(1/dt) for i in range(1, T, 1): Mdhd[:, i] = (Mhd[:, i] - Mhd[:, i - 1]) * ( 1 / dt ) #por que ele fazer isso???????????????????????????????????????????????????? Mdhd2[:, i] = (Mhd2[:, i] - Mhd2[:, i - 1]) * ( 1 / dt) #derivada de hd, que é a posição desejada if phase == 1: ha = kinematicRobo(theta, hOrg, hP, 1, 1) #cinemática do pé esquerdo até o CoM ha2 = kinematicRobo(theta, hOrg, hP, 1, 0) #cinemática de um pé até o outro else: ha = ha2 = np.zeros((8, 1)) return ha, ha2, hP, Mhd, Mhd2, Mdhd, Mdhd2, tempo
def fase2(ha, ha2, trajCoM, ind, trajPA, theta, t1, vecGanho): print('aqui começa a fase2') glob = GlobalVariables() hEdo = glob.getHEDO() L1 = glob.getL1() #L2 = glob.getL2() #L3 = glob.getL3() #L4 = glob.getL4() #L5 = glob.getL5() height = glob.getHeight() MDH = glob.getMDH() hpi = glob.getHpi() #global hpi, L1, L2, L3, L4, L5, height, MDH, hEdo dt = hEdo #dt é o tempo da solução da equação Edo hOrg = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape((8, 1)) #posição da base T = np.size(trajCoM, 0) #t = 1:1:T; #tempo = (T-1)*dt tempo = (T - 1) * dt #matrizes auxiliares Mhd = np.zeros((8, T)) Mha = np.zeros((8, T)) Mdhd = np.zeros((8, T)) Mtheta = np.zeros((6, T)) Mhd2 = np.zeros((8, T)) Mha2 = np.zeros((8, T)) Mdhd2 = np.zeros((8, T)) Mtheta2 = np.zeros((6, T)) Pos = np.zeros((3, T)) Posd = np.zeros((3, T)) Pos2 = np.zeros((3, T)) Posd2 = np.zeros((3, T)) angle = np.zeros(T) angled = np.zeros(T) angle2 = np.zeros(T) angled2 = np.zeros(T) #calculo de Mhd - matriz de hd r = np.array([1, 0, 0, 0]).reshape((4, 1)) #p = [0 0 0 0]'; p = np.array([0, 0, -L1, -height]).reshape((4, 1)) hB1 = transformacao(p, r) #transformação base robô for i in range(0, T, 1): p = np.array([0, trajCoM[i, 0], trajCoM[i, 1], trajCoM[i, 2]]).reshape( (4, 1)) r = np.array([1, 0, 0, 0]).reshape((4, 1)) hd = transformacao(p, r) #posição desejada do CoM mhd = dualQuatMult(hB1, hd) #for j in range(8): Mhd[:, i] = mhd[:, 0] if i < ind: p = np.array([0, trajPA[i, 0], trajPA[i, 1], trajPA[i, 2]]).reshape((4, 1)) n = np.array([0, 1, 0]) angulo = mt.pi / 2 #é isso mesmo????????????????????????????????????????????????????????????? realR = np.array([mt.cos(angulo / 2)]) imagR = mt.sin(angulo / 2) * n rb = np.concatenate((realR, imagR), axis=0).reshape((4, 1)) hd = transformacao(p, rb) #posição desejada do pé mhd2 = dualQuatMult(hB1, hd) #for j in range(8): Mhd2[:, i] = mhd2[:, 0] #transformação da base até o pé else: #for j in range(8): #Mhd2[j,i] = Mhd2[j,ind-1] Mhd2[:, i] = Mhd2[:, ind - 1] hP = ha2 ha2 = kinematicRobo(theta, hOrg, hP, 0, 0) #posição da perna direita #Mdhd[:,0] = (Mhd[:,0] - Mhd[:,0])*(1/dt) #Mdhd2[:,0] = (Mhd2[:,0] - Mhd2[:,0])*(1/dt) for i in range(1, T, 1): #for j in range(8): Mdhd[:, i] = (Mhd[:, i] - Mhd[:, i - 1]) * (1 / dt) Mdhd2[:, i] = (Mhd2[:, i] - Mhd2[:, i - 1]) * (1 / dt) ################################## #inicio do codigo #LQR ganhoS = vecGanho[0, 0] ganhoQ = vecGanho[1, 0] ganhoR = vecGanho[2, 0] #controlador proporcional ganhoK2 = vecGanho[3, 0] K2 = ganhoK2 * np.eye(8) #ganho P-FF S = ganhoS * np.eye(8) Q = ganhoQ * np.eye(8) R = ganhoR * np.eye(8) Rinv = np.linalg.inv(R) C8 = np.diag([1, -1, -1, -1, 1, -1, -1, -1]) #iniciar condições finais esperadas para P e E Pf = S Ef = np.array([0, 0, 0, 0, 0, 0, 0, 0]).reshape((8, 1)) P = Pf MP2 = np.zeros((8, 8, T)) for j in range(8): for k in range(8): MP2[j, k, T - 1] = P[j, k] E = Ef ME2 = np.zeros((8, T)) #for j in range(8): ME2[:, T - 1] = E[:, 0] Pos = np.zeros((3, T)) Posd = np.zeros((3, T)) angle2 = np.zeros(T) angled2 = np.zeros(T) #mhdPlus = np.zeros((8,1)) #mdhdPlus = np.zeros((8,1)) mhd = np.zeros((8, 1)) mdhd = np.zeros((8, 1)) for i in range(T - 2, -1, -1): #for j in range(8): #mhdPlus[:,0] = Mhd[:,i+1] #mdhdPlus[:,0] = Mdhd[:,i+1] aux = dualQuatMult(dualQuatConj(Mhd[:, i + 1].reshape((8, 1))), Mdhd[:, i + 1].reshape((8, 1))) A = dualHamiltonOp(aux, 0) c = -aux #prod2 = np.dot(P,Rinv) P = P - (-P @ A - A.T @ P + P @ Rinv @ P - Q) * dt for j in range(8): for k in range(8): MP2[j, k, i] = P[j, k] E = E - (-1 * (A.T) @ E + P @ Rinv @ E - P @ c) * dt #for j in range(8): ME2[:, i] = E[:, 0] for i in range(0, T, 1): #tic #Controlador LQR para O CoM #calculo de A e c #for j in range(8): # mhd[:,0] = Mhd[:,i] # mdhd[:,0] = Mdhd[:,i] aux = dualQuatMult(dualQuatConj(Mhd[:, i].reshape((8, 1))), Mdhd[:, i].reshape((8, 1))) A = dualHamiltonOp(aux, 0) c = -aux #inicio do controlador #Ja = jacobianoCinematica(theta,hOrg,hP,0,1) xe = KinematicModel(MDH, theta, 6, 0) Ja = jacobiano2(theta, hOrg, hP, xe, 1) #calculo de P e E #calculo de N Hd = dualHamiltonOp(Mhd[:, i].reshape((8, 1)), 0) # prod3 = np.dot(Hd,C8) N = Hd @ C8 @ Ja #pseudo inversa de N Np = np.linalg.pinv(N) #######################################################paramos aqui #calculo do erro e = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape( (8, 1)) - dualQuatMult(dualQuatConj(ha), Mhd[:, i].reshape((8, 1))) #calculo de P e E #for j in range(8): E[:, 0] = ME2[:, i] #P = np.reshape(MP2[:,i],np.shape(A)) P[:, :] = MP2[:, :, i].reshape((8, 8)) do = Np @ Rinv @ (P @ e + E) #calculo do o deseja od = dt * do / 2 #for j in range(6): theta[:, 1] = theta[:, 1] + od[:, 0] # for j in range(1,6,1): # if abs(theta[j,1]) > hpi: # theta[j,1] = np.sign(theta[j,1])*hpi ha = kinematicRobo(theta, hOrg, hP, 0, 1) #posição do CoM com perna esquerda apoiada #controlador 2 #calculo de A e c # mdhd2 = np.zeros((8,1)) # mhd2 = np.zeros((8,1)) #for j in range(8): # mdhd2[:,0] = Mdhd2[:,i] # mhd2[:,0] = Mhd2[:,i] aux2 = dualQuatMult(dualQuatConj(Mhd2[:, i].reshape((8, 1))), Mdhd2[:, i].reshape((8, 1))) #A2 = dualHamiltonOp(aux2,0) c = -aux2 #inicio do controlador #Ja2 = jacobianoCinematica(theta,hOrg,hP,0,0) xe2 = kinematicRobo(theta, hOrg, hP, 1, 0) Ja2 = jacobianoPes(theta, ha, xe2, 0) #calculo de P e E #calculo de N Hd2 = dualHamiltonOp(Mhd2[:, i].reshape((8, 1)), 0) # prod1= np.dot(Hd2,C8) N2 = Hd2 @ C8 @ Ja2 #pseudo inversa de N Np2 = np.linalg.pinv(N2) #calculo do erro e2 = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape( (8, 1)) - dualQuatMult(dualQuatConj(ha2), Mhd2[:, i].reshape( (8, 1))) vec2 = dualQuatMult(dualQuatConj(ha2), Mdhd2[:, i].reshape((8, 1))) #do2 = np.zeros(20,20) do2 = Np2 @ (K2 @ e2 - vec2) #od2 = np.zeros(100) od2 = (do2 * dt) / 2 #for j in range(6): theta[:, 0] = theta[:, 0] + od2[:, 0] ha2 = kinematicRobo(theta, hOrg, hP, 0, 0) #posição da perna direita #plotar os dados #for j in range(8): Mha[:, i] = ha[:, 0] #posição pos = getPositionDualQuat(ha) posd = getPositionDualQuat(Mhd[:, i].reshape((8, 1))) #for j in range(3): Pos[:, i] = pos[:, 0] Posd[:, i] = posd[:, 0] #orientação ra = getRotationDualQuat(ha) rd = getRotationDualQuat(Mhd[:, i].reshape((8, 1))) co = mt.acos(ra[0, 0]) angle[i] = co co = mt.acos(rd[0, 0]) angled[i] = co #for j in range(6): Mtheta[:, i] = theta[:, 0] #plotar os dados #for j in range(8): Mha2[:, i] = ha2[:, 0] #posição pos2 = getPositionDualQuat(ha2) posd2 = getPositionDualQuat(Mhd2[:, i].reshape((8, 1))) #for j in range(3): Pos2[:, i] = pos2[:, 0] Posd2[:, i] = posd2[:, 0] #orientação ra = getRotationDualQuat(ha2) rd = getRotationDualQuat(Mhd2[:, i].reshape((8, 1))) co = mt.acos(ra[0, 0]) angle2[i] = co co = mt.acos(rd[0, 0]) angled2[i] = co Mtheta2[:, i] = theta[:, 1] #mostrar no console o andamento do metódo #msg = sprintf('#d de #d | tempo: #f',i,T,toc); #disp(msg) #hold on plotGraficosControle(t1, dt, T, Pos, Posd, angle, angled, Mha, Mhd, Mtheta, Pos2, Posd2, angle2, angled2, Mha2, Mhd2, Mtheta2, 'r', 'b') return ha, ha2, theta, tempo, Mtheta, Mtheta2