def load_and_plot_results(): # %% Plot and save as PDF # This set subsequent plots to the glotaran style plot_style = PlotStyle() plt.rc("axes", prop_cycle=plot_style.cycler) parameter_file = output_folder.joinpath("optimized_parameters.csv") parameters = read_parameters_from_csv_file(str(parameter_file)) print(f"Optimized parameters loaded:\n {parameters}") result1 = output_folder.joinpath("dataset1.nc") fig1 = plot_overview(result1, linlog=True, show_data=True) timestamp = datetime.today().strftime("%y%m%d_%H%M") fig1.savefig(output_folder.joinpath(f"plot_overview_1of2_{timestamp}.pdf"), bbox_inches="tight") result2 = output_folder.joinpath("dataset2.nc") fig2 = plot_overview(result2, linlog=True) timestamp = datetime.today().strftime("%y%m%d_%H%M") fig2.savefig(output_folder.joinpath(f"plot_overview_2of2_{timestamp}.pdf"), bbox_inches="tight") plt.show()
data_path2 = script_folder.joinpath("equareaIRFsim6.ascii") dataset2 = gta.io.read_data_file(data_path2) # print(dataset2) data_path3 = script_folder.joinpath("equareaIRFsim8.ascii") dataset3 = gta.io.read_data_file(data_path3) # model inlezen + parameters model_path = script_folder.joinpath("model.yml") parameters_path = script_folder.joinpath("parameters.yml") model = gta.read_model_from_yaml_file(model_path) # if the optimized parameters from a previous run are available, use those parameter_file = output_folder.joinpath("optimized_parameters.csv") if parameter_file.exists(): print("Optimized parameters exists: please check") parameters = read_parameters_from_csv_file(str(parameter_file)) else: parameters = gta.read_parameters_from_yaml_file(parameters_path) print(model.validate(parameters=parameters)) # define the analysis scheme to optimize scheme = Scheme( model, parameters, { "dataset1": dataset1, "dataset2": dataset2, "dataset3": dataset3 }, maximum_number_function_evaluations=99,