def test_glow(): print("[Test]: Glow") from glow.config import JsonConfig glow = models.Glow(JsonConfig("hparams/celeba_test.json")) # img = cv2.imread("pictures/tsuki.jpeg") # img = cv2.resize(img, (32, 32)) # img = (img / 255.0).astype(np.float32) # img = img[:, :, ::-1].transpose(2, 0, 1) # x = torch.Tensor([img]*8) x = torch.Tensor(np.random.rand(8, 1, 32, 32)) print('x.size = ', x.size()) batch_size = 8 nb_digits = 10 y = torch.LongTensor(batch_size).random_() % nb_digits print('y = ', y) print('y.view(-1,1) = ', y.view(-1, 1)) y_onehot = torch.FloatTensor(batch_size, nb_digits) y_onehot.zero_() y_onehot.scatter_(1, y.view(-1, 1), 1) print('y_onehot:', y_onehot) z, det, y_logits = glow(x=x, y_onehot=y_onehot) print(z.size()) print(det) print(models.Glow.loss_generative(det)) print('y_logits = ', y_logits) print(models.Glow.loss_class(y_logits, y))
def __init__(self, test_class_index, is_mean, K, class_number): super(AssociateGlowGenerated, self).__init__() self.glow = models.Glow(JsonConfig("hparams/omni_all_bg.json"), test_class_index=test_class_index, is_mean=is_mean, K=K, y_classes=class_number) self.class_number = class_number self.eval_index = test_class_index self.criterion = nn.MSELoss() self.ones_tensor = torch.ones((1, 32, 32)).float().cuda() self.glow_generate = models.Glow( JsonConfig("hparams/omni_all_bg.json"), test_class_index=test_class_index, is_mean=is_mean, K=K, y_classes=class_number)
def test_glow(): print("[Test]: Glow") from glow.config import JsonConfig glow = models.Glow(JsonConfig("hparams_celeba.json")) img = cv2.imread("tsuki.jpeg") img = cv2.resize(img, (64, 64)) img = (img / 255.0).astype(np.float32) img = img[:, :, ::-1].transpose(2, 0, 1) x = torch.Tensor([img] * 8) y_onehot = torch.zeros((8, 40)) z, det, y_logits = glow(x=x, y_onehot=y_onehot) print(z.size()) print(det) print(models.Glow.loss_generative(det))
def test_glow(): print("[Test]: Glow") from glow.config import JsonConfig glow = models.Glow(JsonConfig("hparams/celeba_test.json"), is_mean=True, test_class_index=[1, 2], K=4, y_classes=10, arc_loss=True) # img = cv2.imread("pictures/tsuki.jpeg") # img = cv2.resize(img, (32, 32)) # img = (img / 255.0).astype(np.float32) # img = img[:, :, ::-1].transpose(2, 0, 1) # x = torch.Tensor([img]*8) # glow.set_z_add_random() glow.cuda() x = torch.Tensor(np.random.rand(12, 1, 32, 32)) print('x.size = ', x.size()) batch_size = 12 nb_digits = 10 y = torch.LongTensor(batch_size).random_() % nb_digits print('y = ', y) print('y.view(-1,1) = ', y.view(-1, 1)) y_onehot = torch.FloatTensor(batch_size, nb_digits) y_onehot.zero_() y_onehot.scatter_(1, y.view(-1, 1), 1) print('y_onehot:', y_onehot) z, det, y_logits = glow(x=x, y_onehot=y_onehot) y_logits = glow.class_flow(z, y_onehot) print('z.size() = ', z.size()) print('det = ', det) print('y_logits = ', y_logits) print(models.Glow.loss_generative(det)) # print('y_logits = ',y_logits) print(models.Glow.loss_class(y_logits, y))