コード例 #1
0
def make_selector(roi, x, y):

    state = RoiSubsetState()
    state.roi = roi
    state.xatt = x.id
    state.yatt = y.id

    return state
コード例 #2
0
ファイル: bball_viewer_class.py プロジェクト: dhomeier/glue
    def make_selector(self, roi, x, y):

        state = RoiSubsetState()
        state.roi = roi
        state.xatt = x.id
        state.yatt = y.id

        return state
コード例 #3
0
    def apply_roi(self, roi):

        subset_state = RoiSubsetState()
        xroi, yroi = roi.to_polygon()
        x, y = self._get_plot_attributes()
        subset_state.xatt = x
        subset_state.yatt = y
        subset_state.roi = PolygonalROI(xroi, yroi)
        mode = EditSubsetMode()
        mode.update(self.data, subset_state, focus_data=self.display_data)
コード例 #4
0
ファイル: glueviz.py プロジェクト: beccajcarlson/lasagna
 def make_selector(self, roi, source, y):
     """Selections coming from ImageJ correspond to a rectangle in x and y.
     Could propagate more complex selection criteria from image (e.g.,
     magic wand for nearest neighbors on barcode simplex)
     """
     state = RoiSubsetState()
     state.roi = roi
     state.xatt = source.id
     state.yatt = y.id
     return state
コード例 #5
0
ファイル: client.py プロジェクト: astrofrog/glue
    def apply_roi(self, roi):

        subset_state = RoiSubsetState()
        xroi, yroi = roi.to_polygon()
        x, y = self._get_plot_attributes()
        subset_state.xatt = x
        subset_state.yatt = y
        subset_state.roi = PolygonalROI(xroi, yroi)
        mode = EditSubsetMode()
        mode.update(self.data, subset_state, focus_data=self.display_data)
コード例 #6
0
def make_selector(roi, full_path):
    if full_path:
        hit = roi.contains(timelines['x'], timelines['y']).any(axis=1)
        rids = timelines[hit].index.unique()
        return CategorySubsetState('run_id', rids)

    state = RoiSubsetState()
    state.xatt = 'x'
    state.yatt = 'y'
    state.roi = roi
    return state
コード例 #7
0
    def test_reordered_pixel_components(self):
        self.data._pixel_component_ids = self.data._pixel_component_ids[::-1]
        range_state = RangeSubsetState(105.5, 107.7,
                                       self.data.pixel_component_ids[1])

        self.dc.new_subset_group(subset_state=range_state,
                                 label='reordered_range')
        rect_state = RoiSubsetState(self.data.pixel_component_ids[0],
                                    self.data.pixel_component_ids[1],
                                    RectangularROI(1, 3.5, -0.2, 3.3))
        self.dc.new_subset_group(subset_state=rect_state,
                                 label='reordered_rectangular')

        range_region = self.data.get_selection_definition(
            subset_id='reordered_range', format='astropy-regions')
        rect_region = self.data.get_selection_definition(
            subset_id='reordered_rectangular', format='astropy-regions')

        assert isinstance(range_region, RectanglePixelRegion)

        assert_allclose(range_region.center.x, 128)
        assert_allclose(range_region.center.y, 106.6)
        assert_allclose(range_region.width, 256)
        assert_allclose(range_region.height, 2.2)

        assert isinstance(rect_region, RectanglePixelRegion)

        assert_allclose(rect_region.center.x, 2.25)
        assert_allclose(rect_region.center.y, 1.55)
        assert_allclose(rect_region.width, 2.5)
        assert_allclose(rect_region.height, 3.5)
コード例 #8
0
ファイル: glueviz.py プロジェクト: beccajcarlson/lasagna
def update_selection(selection, viewer):
    """Called after an ImageJ selection keypress. Assumes first dataset contains the 
    'x' and 'y' components. Builds a Glue SubsetState and applies it using Glue's current settings.
	Selection consists of (xmin, xmax, ymin, ymax)
	"""
    xmin, xmax, ymin, ymax = selection
    roi = RectangularROI(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)
    xatt = lasagna.config.app.data_collection[0].data.find_component_id('x')
    yatt = lasagna.config.app.data_collection[0].data.find_component_id('y')
    xy_state = RoiSubsetState(xatt=xatt, yatt=yatt, roi=roi)
    file_state = CategorySubsetState(viewer.source_id, viewer.source_val)
    # selection only applies to data in displayed file
    subset_state = AndState(xy_state, file_state)

    data_collection = lasagna.config.app.data_collection

    # if no subset groups selected, make a new one
    layers = (lasagna.config.app._layer_widget.selected_layers())
    subset_groups = [s for s in layers if isinstance(s, SubsetGroup)]
    if len(subset_groups) == 0:
        global fiji_label
        new_label = 'Fiji %d' % fiji_label
        fiji_label += 1
        data_collection.new_subset_group(label=new_label,
                                         subset_state=subset_state)
    else:
        edit_mode = EditSubsetMode()
        edit_mode.update(data_collection, subset_state)
コード例 #9
0
    def test_multior_region(self):
        rects = [(1, 2, 3, 4), (1.5, 2.5, 3.5, 4.5), (2, 3, 4, 5)]
        states = [
            RoiSubsetState(self.data.pixel_component_ids[1],
                           self.data.pixel_component_ids[0],
                           RectangularROI(*rect)) for rect in rects
        ]

        multior_subset_state = MultiOrState(states)
        self.dc.new_subset_group(subset_state=multior_subset_state,
                                 label='multiorstate')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, CompoundPixelRegion)
        assert isinstance(reg.region1, CompoundPixelRegion)
        assert isinstance(reg.region2, RectanglePixelRegion)
        assert isinstance(reg.region1.region1, RectanglePixelRegion)
        assert isinstance(reg.region1.region2, RectanglePixelRegion)

        assert reg.contains(PixCoord(1.25, 3.25))
        assert reg.contains(PixCoord(1.75, 3.75))
        assert reg.contains(PixCoord(2.25, 3.75))
        assert reg.contains(PixCoord(2.25, 4.25))
        assert reg.contains(PixCoord(2.75, 4.75))
        assert not reg.contains(PixCoord(5, 7))
コード例 #10
0
def test_region_from_subset_profile(jdaviz_app, spectral_cube_wcs):
    data = Data(flux=np.ones((256, 128, 128)),
                label='Test 1D Flux',
                coords=spectral_cube_wcs)
    jdaviz_app.data_collection.append(data)

    subset_state = RoiSubsetState(data.pixel_component_ids[1],
                                  data.pixel_component_ids[0],
                                  XRangeROI(1, 3.5))

    jdaviz_app.add_data_to_viewer('spectrum-viewer', 'Test 1D Flux')

    jdaviz_app.data_collection.new_subset_group(subset_state=subset_state,
                                                label='rectangular')

    subsets = jdaviz_app.get_subsets_from_viewer('spectrum-viewer')
    reg = subsets.get('rectangular')

    assert len(subsets) == 1
    assert isinstance(reg, RectanglePixelRegion)

    assert_allclose(reg.center.x, 2.25)
    assert_allclose(reg.center.y, 128)
    assert_allclose(reg.width, 2.5)
    assert_allclose(reg.height, 256)
コード例 #11
0
ファイル: spectrum_tool.py プロジェクト: PennyQ/glue
    def spectrum(data, attribute, roi, slc, zaxis):

        # Find the integer index of the x and y axes, which are the axes for
        # which the image is shown (the ROI is drawn along these attributes)
        xaxis = slc.index('x')
        yaxis = slc.index('y')

        # Get the actual component IDs corresponding to these axes
        xatt = data.get_pixel_component_id(xaxis)
        yatt = data.get_pixel_component_id(yaxis)

        # Set up a view that does not reduce the dimensionality of the array but
        # extracts 1-element slices along dimensions that are not relevant.
        view = []
        for idim, dim in enumerate(slc):
            if idim in (xaxis, yaxis, zaxis):
                view.append(slice(None))
            else:
                view.append(slice(dim, dim + 1))
        view = tuple(view)

        # We now delegate to RoiSubsetState to compute the mask based on the ROI
        subset_state = RoiSubsetState(xatt=xatt, yatt=yatt, roi=roi)
        mask = subset_state.to_mask(data, view=view)

        # We now extract the values that fall inside the ROI. Unfortunately,
        # this returns a flat 1-d array, so we need to then reshape it to get
        # an array with shape (n_spec, n_pix), where n_pix is the number of
        # pixels inside the ROI

        values = data[attribute, view]

        if zaxis != 0:
            values = values.swapaxes(zaxis, 0)
            mask = mask.swapaxes(zaxis, 0)

        values = values[mask].reshape(data.shape[zaxis], -1)

        # We then average along the spatial dimension
        spectrum = np.nanmean(values, axis=1)

        # Get the world coordinates of the spectral axis
        x = Extractor.abcissa(data, zaxis)

        return x, spectrum
コード例 #12
0
    def spectrum(data, attribute, roi, slc, zaxis):

        # Find the integer index of the x and y axes, which are the axes for
        # which the image is shown (the ROI is drawn along these attributes)
        xaxis = slc.index('x')
        yaxis = slc.index('y')

        # Get the actual component IDs corresponding to these axes
        xatt = data.get_pixel_component_id(xaxis)
        yatt = data.get_pixel_component_id(yaxis)

        # Set up a view that does not reduce the dimensionality of the array but
        # extracts 1-element slices along dimensions that are not relevant.
        view = []
        for idim, dim in enumerate(slc):
            if idim in (xaxis, yaxis, zaxis):
                view.append(slice(None))
            else:
                view.append(slice(dim, dim + 1))
        view = tuple(view)

        # We now delegate to RoiSubsetState to compute the mask based on the ROI
        subset_state = RoiSubsetState(xatt=xatt, yatt=yatt, roi=roi)
        mask = subset_state.to_mask(data, view=view)

        # We now extract the values that fall inside the ROI. Unfortunately,
        # this returns a flat 1-d array, so we need to then reshape it to get
        # an array with shape (n_spec, n_pix), where n_pix is the number of
        # pixels inside the ROI

        values = data[attribute, view]

        if zaxis != 0:
            values = values.swapaxes(zaxis, 0)
            mask = mask.swapaxes(zaxis, 0)

        values = values[mask].reshape(data.shape[zaxis], -1)

        # We then average along the spatial dimension
        spectrum = np.nanmean(values, axis=1)

        # Get the world coordinates of the spectral axis
        x = Extractor.abcissa(data, zaxis)

        return x, spectrum
コード例 #13
0
 def setup(self):
     self.data_collection, self.viewer = get_data_collection_and_viewer()
     load_wcs_data(self.data_collection)
     self.viewer.add_data(self.data_collection[0])
     self.viewer.add_data(self.data_collection[1])
     roi = CircularROI(256, 256, 120)
     py1, px1 = self.data_collection[0].pixel_component_ids
     self.subset_state = RoiSubsetState(px1, py1, roi)
     self.viewer.register_to_hub(self.data_collection.hub)
コード例 #14
0
    def test_or_region(self):
        subset_state1 = RoiSubsetState(self.data.pixel_component_ids[1],
                                       self.data.pixel_component_ids[0],
                                       RectangularROI(1, 5, 2, 6))
        subset_state2 = RoiSubsetState(self.data.pixel_component_ids[1],
                                       self.data.pixel_component_ids[0],
                                       CircularROI(4.75, 5.75, 0.5))
        or_subset_state = OrState(subset_state1, subset_state2)
        self.dc.new_subset_group(subset_state=or_subset_state, label='orstate')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, CompoundPixelRegion)
        assert isinstance(reg.region1, RectanglePixelRegion)
        assert isinstance(reg.region2, CirclePixelRegion)

        assert reg.contains(PixCoord(4.5, 5.5))
        assert reg.contains(PixCoord(3, 4))
        assert reg.contains(PixCoord(5.1, 6.1))
        assert not reg.contains(PixCoord(11, 12))
コード例 #15
0
ファイル: data.py プロジェクト: glue-viz/glue-benchmarks
    def setup(self):

        # Set up main 3-d dataset
        self.data = Data(values=np.random.random((512, 512, 512)))

        # Set up subset state which is a polygon defined in pixel space and
        # only covering a small fraction of the whole cube.
        self.polygonal_roi = PolygonalROI([440, 460, 450], [400, 455, 500])
        self.polygonal_subset_state = RoiSubsetState(xatt=self.data.pixel_component_ids[0],
                                                     yatt=self.data.pixel_component_ids[2],
                                                     roi=self.polygonal_roi)
コード例 #16
0
    def test_point_roi(self):

        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      PointROI(2.64, 5.4))

        self.dc.new_subset_group(subset_state=subset_state, label='point')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, PointPixelRegion)

        assert_equal(reg.center.x, 2.64)
        assert_equal(reg.center.y, 5.4)
コード例 #17
0
    def test_invalid_combos(self):
        good_subset = RoiSubsetState(self.data.pixel_component_ids[1],
                                     self.data.pixel_component_ids[0],
                                     RectangularROI(1, 5, 2, 6))
        bad_subset = RoiSubsetState(self.data.pixel_component_ids[1],
                                    self.data.main_components[0],
                                    CircularROI(4.75, 5.75, 0.5))
        and_sub = AndState(good_subset, bad_subset)
        or_sub = OrState(good_subset, bad_subset)
        xor_sub = XorState(good_subset, bad_subset)
        multior = MultiOrState([good_subset, bad_subset])
        self.dc.new_subset_group(subset_state=and_sub, label='and')
        self.dc.new_subset_group(subset_state=or_sub, label='or')
        self.dc.new_subset_group(subset_state=xor_sub, label='xor')
        self.dc.new_subset_group(subset_state=multior, label='multior')

        expected_error = 'Subset state yatt should be y pixel coordinate'

        with pytest.raises(ValueError) as exc:
            self.data.get_selection_definition(subset_id='and',
                                               format='astropy-regions')
        assert exc.value.args[0] == expected_error

        with pytest.raises(ValueError) as exc:
            self.data.get_selection_definition(subset_id='or',
                                               format='astropy-regions')
        assert exc.value.args[0] == expected_error

        with pytest.raises(ValueError) as exc:
            self.data.get_selection_definition(subset_id='xor',
                                               format='astropy-regions')
        assert exc.value.args[0] == expected_error

        with pytest.raises(ValueError) as exc:
            self.data.get_selection_definition(subset_id='multior',
                                               format='astropy-regions')
        assert exc.value.args[0] == expected_error
コード例 #18
0
    def test_circular_roi(self):

        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      CircularROI(1, 3.5, 0.75))

        self.dc.new_subset_group(subset_state=subset_state, label='circular')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, CirclePixelRegion)

        assert_equal(reg.center.x, 1)
        assert_equal(reg.center.y, 3.5)
        assert_equal(reg.radius, 0.75)
コード例 #19
0
ファイル: app.py プロジェクト: pllim/glue-jupyter
    def subset_roi(self, attributes, roi):
        """
        Create a subset from a region of interest.

        Parameters
        ----------
        attributes : iterable
            The attributes on the x and y axis
        roi : `~glue.core.roi.Roi`
            The region of interest to use to create the subset.
        """

        subset_state = RoiSubsetState(attributes[0], attributes[1], roi)
        cmd = ApplySubsetState(data_collection=self.data_collection,
                               subset_state=subset_state)
        self._session.command_stack.do(cmd)
コード例 #20
0
    def test_xregion_roi(self):

        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      XRangeROI(1, 3.5))

        self.dc.new_subset_group(subset_state=subset_state, label='xrangeroi')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, RectanglePixelRegion)

        assert_allclose(reg.center.x, 2.25)
        assert_allclose(reg.center.y, 64)
        assert_allclose(reg.width, 2.5)
        assert_allclose(reg.height, 128)
コード例 #21
0
    def test_mpl_roi(self):
        rect_roi = RectangularROI(1, 3.5, -0.2, 3.3)
        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      AbstractMplRoi(None, rect_roi))
        self.dc.new_subset_group(subset_state=subset_state,
                                 label='mpl_rectangular')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, RectanglePixelRegion)

        assert_allclose(reg.center.x, 2.25)
        assert_allclose(reg.center.y, 1.55)
        assert_allclose(reg.width, 2.5)
        assert_allclose(reg.height, 3.5)
コード例 #22
0
    def test_polygonal_roi(self):

        xv = [1.3, 2, 3, 1.5, 0.5]
        yv = [10, 20.20, 30, 25, 17.17]

        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      PolygonalROI(xv, yv))

        self.dc.new_subset_group(subset_state=subset_state, label='polygon')

        reg = self.data.get_selection_definition(format='astropy-regions')

        assert isinstance(reg, PolygonPixelRegion)

        assert_array_equal(reg.vertices.x, xv)
        assert_array_equal(reg.vertices.y, yv)
コード例 #23
0
def layer_to_subset(selected_layers, data_collection):

    # loop over selected  layers
    for layer in selected_layers:
        if isinstance(layer, RegionData):
            for data in data_collection:
                if hasattr(data, 'coords') and hasattr(data.coords, 'wcs'):
                    list_of_rois = layer.to_subset(data.coords.wcs)

                    roisubstates = [RoiSubsetState(data.coordinate_components[1],
                                                   data.coordinate_components[0],
                                                   roi=roi
                                                  )
                                    for roi in list_of_rois]
                    composite_substate = roisubstates[0]
                    if len(list_of_rois) > 1:
                        composite_substate = MultiOrState(roisubstates)
                    else:
                        composite_substate = roisubstates[0]
                    subset_group = data_collection.new_subset_group(label=layer.label,
                                                                    subset_state=composite_substate)
コード例 #24
0
    def test_subset_id(self):

        subset_state = RoiSubsetState(self.data.pixel_component_ids[1],
                                      self.data.pixel_component_ids[0],
                                      RectangularROI(1, 3.5, -0.2, 3.3))

        self.dc.new_subset_group(subset_state=subset_state,
                                 label='rectangular')

        for subset_id in [None, 0, 'rectangular']:
            reg = self.data.get_selection_definition(format='astropy-regions',
                                                     subset_id=subset_id)
            assert isinstance(reg, RectanglePixelRegion)
            assert_allclose(reg.center.x, 2.25)
            assert_allclose(reg.center.y, 1.55)
            assert_allclose(reg.width, 2.5)
            assert_allclose(reg.height, 3.5)

        with pytest.raises(ValueError) as exc:
            self.data.get_selection_definition(format='astropy-regions',
                                               subset_id='circular')
        assert exc.value.args[0] == "No subset found with the label 'circular'"
コード例 #25
0
def test_region_from_subset_3d(jdaviz_app):
    data = Data(flux=np.ones((256, 128, 128)), label='Test 3D Flux')
    jdaviz_app.data_collection.append(data)

    subset_state = RoiSubsetState(data.pixel_component_ids[1],
                                  data.pixel_component_ids[0],
                                  RectangularROI(1, 3.5, -0.2, 3.3))

    jdaviz_app.add_data_to_viewer('flux-viewer', 'Test 3D Flux')

    jdaviz_app.data_collection.new_subset_group(subset_state=subset_state,
                                                label='rectangular')

    subsets = jdaviz_app.get_subsets_from_viewer('flux-viewer')
    reg = subsets.get('rectangular')

    assert len(subsets) == 1
    assert isinstance(reg, RectanglePixelRegion)

    assert_allclose(reg.center.x, 2.25)
    assert_allclose(reg.center.x, 2.25)
    assert_allclose(reg.center.y, 1.55)
    assert_allclose(reg.width, 2.5)
    assert_allclose(reg.height, 3.5)
コード例 #26
0
def _load_roi_subset_state(rec, context):
    return RoiSubsetState(context.object(rec['xatt']),
                          context.object(rec['yatt']),
                          context.object(rec['roi']))
コード例 #27
0
ファイル: app.py プロジェクト: evanszhandire/glue-jupyter
 def subset_roi(self, components, roi, use_current=False):
     subset_state = RoiSubsetState(components[0], components[1], roi)
     cmd = ApplySubsetState(data_collection=self.data_collection,
                            subset_state=subset_state,
                            use_current=use_current)
     self._session.command_stack.do(cmd)
コード例 #28
0
    def subset_from_roi(self,
                        att,
                        roi,
                        other_comp=None,
                        other_att=None,
                        coord='x'):
        """
        Create a SubsetState object from an ROI.

        This encapsulates the logic for creating subset states with Components.
        See the documentation for CategoricalComponents for caveats involved
        with mixed-type plots.

        :param att: attribute name of this Component
        :param roi: an ROI object
        :param other_comp: The other Component for 2D ROIs
        :param other_att: The attribute name of the other Component
        :param coord: The orientation of this Component
        :param is_nested: True if this was passed from another Component.
        :return: A SubsetState (or subclass) object
        """

        if coord not in ('x', 'y'):
            raise ValueError('coord should be one of x/y')

        other_coord = 'y' if coord == 'x' else 'x'

        if isinstance(roi, RangeROI):

            # The selection is either an x range or a y range

            if roi.ori == coord:

                # The selection applies to the current component
                lo, hi = roi.range()
                subset_state = RangeSubsetState(lo, hi, att)

            else:

                # The selection applies to the other component, so we delegate
                return other_comp.subset_from_roi(other_att,
                                                  roi,
                                                  other_comp=self,
                                                  other_att=att,
                                                  coord=other_coord)

        else:

            # The selection is polygon-like. Categorical components require
            # special care, so if the other component is categorical, we need to
            # delegate to CategoricalComponent.subset_from_roi.

            if isinstance(other_comp, CategoricalComponent):

                return other_comp.subset_from_roi(other_att,
                                                  roi,
                                                  other_comp=self,
                                                  other_att=att,
                                                  is_nested=True,
                                                  coord=other_coord)
            else:

                subset_state = RoiSubsetState()
                subset_state.xatt = att
                subset_state.yatt = other_att
                x, y = roi.to_polygon()
                subset_state.roi = PolygonalROI(x, y)

        return subset_state
コード例 #29
0
ファイル: app.py プロジェクト: evanszhandire/glue-jupyter
 def _roi_to_subset_state(self, components, roi):
     return RoiSubsetState(components[0], components[1], roi)
コード例 #30
0
    def to_object(self, subset):
        """
        Convert a glue Subset object to a astropy regions Region object.

        Parameters
        ----------
        subset : `glue.core.subset.Subset`
            The subset to convert to a Region object
        """
        data = subset.data

        if data.pixel_component_ids[0].axis == 0:
            x_pix_att = data.pixel_component_ids[1]
            y_pix_att = data.pixel_component_ids[0]
        else:
            x_pix_att = data.pixel_component_ids[0]
            y_pix_att = data.pixel_component_ids[1]

        subset_state = subset.subset_state

        if isinstance(subset_state, RoiSubsetState):

            roi = subset_state.roi
            if isinstance(roi, RectangularROI):
                xcen = 0.5 * (roi.xmin + roi.xmax)
                ycen = 0.5 * (roi.ymin + roi.ymax)
                width = roi.xmax - roi.xmin
                height = roi.ymax - roi.ymin
                return RectanglePixelRegion(PixCoord(xcen, ycen), width,
                                            height)
            elif isinstance(roi, PolygonalROI):
                return PolygonPixelRegion(PixCoord(roi.vx, roi.vy))
            elif isinstance(roi, CircularROI):
                return CirclePixelRegion(PixCoord(*roi.get_center()),
                                         roi.get_radius())
            elif isinstance(roi, EllipticalROI):
                return EllipsePixelRegion(PixCoord(roi.xc, roi.yc),
                                          roi.radius_x, roi.radius_y)
            elif isinstance(roi, PointROI):
                return PointPixelRegion(PixCoord(*roi.center()))
            elif isinstance(roi, RangeROI):
                return range_to_rect(data, roi.ori, roi.min, roi.max)

            elif isinstance(roi, AbstractMplRoi):
                temp_sub = Subset(data)
                temp_sub.subset_state = RoiSubsetState(x_pix_att, y_pix_att,
                                                       roi.roi())
                try:
                    return self.to_object(temp_sub)
                except NotImplementedError:
                    raise NotImplementedError(
                        "ROIs of type {0} are not yet supported".format(
                            roi.__class__.__name__))

            else:
                raise NotImplementedError(
                    "ROIs of type {0} are not yet supported".format(
                        roi.__class__.__name__))

        elif isinstance(subset_state, RangeSubsetState):
            if subset_state.att == x_pix_att:
                return range_to_rect(data, 'x', subset_state.lo,
                                     subset_state.hi)
            elif subset_state.att == y_pix_att:
                return range_to_rect(data, 'y', subset_state.lo,
                                     subset_state.hi)
            else:
                raise ValueError(
                    'Range subset state att should be either x or y pixel coordinate'
                )

        elif isinstance(subset_state, MultiRangeSubsetState):
            if subset_state.att == x_pix_att:
                ori = 'x'
            elif subset_state.att == y_pix_att:
                ori = 'y'
            else:
                message = 'Multirange subset state att should be either x or y pixel coordinate'
                raise ValueError(message)
            if len(subset_state.pairs) == 0:
                message = 'Multirange subset state should contain at least one range'
                raise ValueError(message)
            region = range_to_rect(data, ori, subset_state.pairs[0][0],
                                   subset_state.pairs[0][1])
            for pair in subset_state.pairs[1:]:
                region = region | range_to_rect(data, ori, pair[0], pair[1])
            return region

        elif isinstance(subset_state, PixelSubsetState):
            return PointPixelRegion(PixCoord(*subset_state.get_xy(data, 1, 0)))

        elif isinstance(subset_state, AndState):
            temp_sub1 = Subset(data=data)
            temp_sub1.subset_state = subset_state.state1
            temp_sub2 = Subset(data=data)
            temp_sub2.subset_state = subset_state.state2
            return self.to_object(temp_sub1) & self.to_object(temp_sub2)

        elif isinstance(subset_state, OrState):
            temp_sub1 = Subset(data=data)
            temp_sub1.subset_state = subset_state.state1
            temp_sub2 = Subset(data=data)
            temp_sub2.subset_state = subset_state.state2
            return self.to_object(temp_sub1) | self.to_object(temp_sub2)

        elif isinstance(subset_state, XorState):
            temp_sub1 = Subset(data=data)
            temp_sub1.subset_state = subset_state.state1
            temp_sub2 = Subset(data=data)
            temp_sub2.subset_state = subset_state.state2
            return self.to_object(temp_sub1) ^ self.to_object(temp_sub2)

        elif isinstance(subset_state, MultiOrState):
            temp_sub = Subset(data=data)
            temp_sub.subset_state = subset_state.states[0]
            region = self.to_object(temp_sub)
            for state in subset_state.states[1:]:
                temp_sub.subset_state = state
                region = region | self.to_object(temp_sub)
            return region

        else:
            raise NotImplementedError(
                "Subset states of type {0} are not supported".format(
                    subset_state.__class__.__name__))
コード例 #31
0
def _load_roi_subset_state(rec, context):
    return RoiSubsetState(context.object(rec['xatt']),
                          context.object(rec['yatt']),
                          context.object(rec['roi']),
                          context.object(rec['pretransform'] if 'pretransform' in rec else None))