def to_coinc_xml_object(self, file_name): outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) ifos = list(self.sngl_files.keys()) proc_id = ligolw_process.register_to_xmldoc( outdoc, 'pycbc', {}, ifos=ifos, comment='', version=pycbc_version.git_hash, cvs_repository='pycbc/' + pycbc_version.git_branch, cvs_entry_time=pycbc_version.date).process_id search_summ_table = lsctables.New(lsctables.SearchSummaryTable) coinc_h5file = self.coinc_file.h5file try: start_time = coinc_h5file['segments']['coinc']['start'][:].min() end_time = coinc_h5file['segments']['coinc']['end'][:].max() except KeyError: start_times = [] end_times = [] for ifo_comb in coinc_h5file['segments']: if ifo_comb == 'foreground_veto': continue seg_group = coinc_h5file['segments'][ifo_comb] start_times.append(seg_group['start'][:].min()) end_times.append(seg_group['end'][:].max()) start_time = min(start_times) end_time = max(end_times) num_trigs = len(self.sort_arr) search_summary = return_search_summary(start_time, end_time, num_trigs, ifos) search_summ_table.append(search_summary) outdoc.childNodes[0].appendChild(search_summ_table) sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) coinc_def_table = lsctables.New(lsctables.CoincDefTable) coinc_event_table = lsctables.New(lsctables.CoincTable) coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable) coinc_event_map_table = lsctables.New(lsctables.CoincMapTable) time_slide_table = lsctables.New(lsctables.TimeSlideTable) # Set up time_slide table time_slide_id = lsctables.TimeSlideID(0) for ifo in ifos: time_slide_row = lsctables.TimeSlide() time_slide_row.instrument = ifo time_slide_row.time_slide_id = time_slide_id time_slide_row.offset = 0 time_slide_row.process_id = proc_id time_slide_table.append(time_slide_row) # Set up coinc_definer table coinc_def_id = lsctables.CoincDefID(0) coinc_def_row = lsctables.CoincDef() coinc_def_row.search = "inspiral" coinc_def_row.description = \ "sngl_inspiral<-->sngl_inspiral coincidences" coinc_def_row.coinc_def_id = coinc_def_id coinc_def_row.search_coinc_type = 0 coinc_def_table.append(coinc_def_row) bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z'] bank_col_vals = {} for name in bank_col_names: bank_col_vals[name] = self.get_bankfile_array(name) coinc_event_names = ['ifar', 'time', 'fap', 'stat'] coinc_event_vals = {} for name in coinc_event_names: if name == 'time': coinc_event_vals[name] = self.get_end_time() else: coinc_event_vals[name] = self.get_coincfile_array(name) sngl_col_names = [ 'snr', 'chisq', 'chisq_dof', 'bank_chisq', 'bank_chisq_dof', 'cont_chisq', 'cont_chisq_dof', 'end_time', 'template_duration', 'coa_phase', 'sigmasq' ] sngl_col_vals = {} for name in sngl_col_names: sngl_col_vals[name] = self.get_snglfile_array_dict(name) sngl_event_count = 0 for idx in range(len(self.sort_arr)): # Set up IDs and mapping values coinc_id = lsctables.CoincID(idx) # Set up sngls # FIXME: As two-ifo is hardcoded loop over all ifos sngl_combined_mchirp = 0 sngl_combined_mtot = 0 net_snrsq = 0 for ifo in ifos: # If this ifo is not participating in this coincidence then # ignore it and move on. if not sngl_col_vals['snr'][ifo][1][idx]: continue event_id = lsctables.SnglInspiralID(sngl_event_count) sngl_event_count += 1 sngl = return_empty_sngl() sngl.event_id = event_id sngl.ifo = ifo net_snrsq += sngl_col_vals['snr'][ifo][0][idx]**2 for name in sngl_col_names: val = sngl_col_vals[name][ifo][0][idx] if name == 'end_time': sngl.set_end(LIGOTimeGPS(val)) else: setattr(sngl, name, val) for name in bank_col_names: val = bank_col_vals[name][idx] setattr(sngl, name, val) sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta( sngl.mass1, sngl.mass2) sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta( sngl.mass1, sngl.mass2) sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr sngl_combined_mchirp += sngl.mchirp sngl_combined_mtot += sngl.mtotal sngl_inspiral_table.append(sngl) # Set up coinc_map entry coinc_map_row = lsctables.CoincMap() coinc_map_row.table_name = 'sngl_inspiral' coinc_map_row.coinc_event_id = coinc_id coinc_map_row.event_id = event_id coinc_event_map_table.append(coinc_map_row) sngl_combined_mchirp = sngl_combined_mchirp / len(ifos) sngl_combined_mtot = sngl_combined_mtot / len(ifos) # Set up coinc inspiral and coinc event tables coinc_event_row = lsctables.Coinc() coinc_inspiral_row = lsctables.CoincInspiral() coinc_event_row.coinc_def_id = coinc_def_id coinc_event_row.nevents = len(ifos) coinc_event_row.instruments = ','.join(ifos) coinc_inspiral_row.set_ifos(ifos) coinc_event_row.time_slide_id = time_slide_id coinc_event_row.process_id = proc_id coinc_event_row.coinc_event_id = coinc_id coinc_inspiral_row.coinc_event_id = coinc_id coinc_inspiral_row.mchirp = sngl_combined_mchirp coinc_inspiral_row.mass = sngl_combined_mtot coinc_inspiral_row.set_end( LIGOTimeGPS(coinc_event_vals['time'][idx])) coinc_inspiral_row.snr = net_snrsq**0.5 coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx] coinc_inspiral_row.combined_far = 1. / coinc_event_vals['ifar'][idx] # Transform to Hz coinc_inspiral_row.combined_far = \ coinc_inspiral_row.combined_far / YRJUL_SI coinc_event_row.likelihood = coinc_event_vals['stat'][idx] coinc_inspiral_row.minimum_duration = 0. coinc_event_table.append(coinc_event_row) coinc_inspiral_table.append(coinc_inspiral_row) outdoc.childNodes[0].appendChild(coinc_def_table) outdoc.childNodes[0].appendChild(coinc_event_table) outdoc.childNodes[0].appendChild(coinc_event_map_table) outdoc.childNodes[0].appendChild(time_slide_table) outdoc.childNodes[0].appendChild(coinc_inspiral_table) outdoc.childNodes[0].appendChild(sngl_inspiral_table) ligolw_utils.write_filename(outdoc, file_name)
for key, psd in psds.items() if psd is not None } # Read injection file. progress.update(-1, 'reading ' + opts.input.name) xmldoc, _ = ligolw_utils.load_fileobj( opts.input, contenthandler=ligolw_bayestar.LSCTablesContentHandler) # Extract simulation table from injection file. sim_inspiral_table = ligolw_table.get_table( xmldoc, lsctables.SimInspiralTable.tableName) # Create a SnglInspiral table and initialize its row ID counter. sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) out_xmldoc.childNodes[0].appendChild(sngl_inspiral_table) sngl_inspiral_table.set_next_id(lsctables.SnglInspiralID(0)) # Create a time slide entry. Needed for coinc_event rows. time_slide_table = lsctables.New(lsctables.TimeSlideTable) out_xmldoc.childNodes[0].appendChild(time_slide_table) time_slide_id = time_slide_table.get_time_slide_id( {ifo: 0 for ifo in opts.detector}, create_new=process) # Create a CoincDef table and record a CoincDef row for # sngl_inspiral <-> sngl_inspiral coincidences. coinc_def_table = lsctables.New(lsctables.CoincDefTable) out_xmldoc.childNodes[0].appendChild(coinc_def_table) coinc_def = InspiralCoincDef coinc_def_id = coinc_def_table.get_next_id() coinc_def.coinc_def_id = coinc_def_id
def __init__(self, ifos, coinc_results, **kwargs): """Initialize a ligolw xml representation of a zerolag trigger for upload from pycbc live to gracedb. Parameters ---------- ifos: list of strs A list of the ifos pariticipating in this trigger coinc_results: dict of values A dictionary of values. The format is defined in pycbc/events/coinc.py and matches the on disk representation in the hdf file for this time. psds: dict of FrequencySeries Dictionary providing PSD estimates for all involved detectors. low_frequency_cutoff: float Minimum valid frequency for the PSD estimates. followup_data: dict of dicts, optional Dictionary providing SNR time series for each detector, to be used in sky localization with BAYESTAR. The format should be `followup_data['H1']['snr_series']`. More detectors can be present than given in `ifos`. If so, the extra detectors will only be used for sky localization. channel_names: dict of strings, optional Strain channel names for each detector. Will be recorded in the sngl_inspiral table. """ self.template_id = coinc_results['foreground/%s/template_id' % ifos[0]] self.coinc_results = coinc_results self.ifos = ifos # remember if this should be marked as HWINJ self.is_hardware_injection = ('HWINJ' in coinc_results and coinc_results['HWINJ']) if 'followup_data' in kwargs: fud = kwargs['followup_data'] assert len({fud[ifo]['snr_series'].delta_t for ifo in fud}) == 1, \ "delta_t for all ifos do not match" self.snr_series = {ifo: fud[ifo]['snr_series'] for ifo in fud} usable_ifos = fud.keys() followup_ifos = list(set(usable_ifos) - set(ifos)) else: self.snr_series = None usable_ifos = ifos followup_ifos = [] # Set up the bare structure of the xml document outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) proc_id = ligolw_process.register_to_xmldoc( outdoc, 'pycbc', {}, ifos=usable_ifos, comment='', version=pycbc_version.git_hash, cvs_repository='pycbc/'+pycbc_version.git_branch, cvs_entry_time=pycbc_version.date).process_id # Set up coinc_definer table coinc_def_table = lsctables.New(lsctables.CoincDefTable) coinc_def_id = lsctables.CoincDefID(0) coinc_def_row = lsctables.CoincDef() coinc_def_row.search = "inspiral" coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs" coinc_def_row.coinc_def_id = coinc_def_id coinc_def_row.search_coinc_type = 0 coinc_def_table.append(coinc_def_row) outdoc.childNodes[0].appendChild(coinc_def_table) # Set up coinc inspiral and coinc event tables coinc_id = lsctables.CoincID(0) coinc_event_table = lsctables.New(lsctables.CoincTable) coinc_event_row = lsctables.Coinc() coinc_event_row.coinc_def_id = coinc_def_id coinc_event_row.nevents = len(usable_ifos) coinc_event_row.instruments = ','.join(usable_ifos) coinc_event_row.time_slide_id = lsctables.TimeSlideID(0) coinc_event_row.process_id = proc_id coinc_event_row.coinc_event_id = coinc_id coinc_event_row.likelihood = 0. coinc_event_table.append(coinc_event_row) outdoc.childNodes[0].appendChild(coinc_event_table) # Set up sngls sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) coinc_event_map_table = lsctables.New(lsctables.CoincMapTable) sngl_populated = None network_snrsq = 0 for sngl_id, ifo in enumerate(usable_ifos): sngl = return_empty_sngl(nones=True) sngl.event_id = lsctables.SnglInspiralID(sngl_id) sngl.process_id = proc_id sngl.ifo = ifo names = [n.split('/')[-1] for n in coinc_results if 'foreground/%s' % ifo in n] for name in names: val = coinc_results['foreground/%s/%s' % (ifo, name)] if name == 'end_time': sngl.set_end(lal.LIGOTimeGPS(val)) else: try: setattr(sngl, name, val) except AttributeError: pass if sngl.mass1 and sngl.mass2: sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta( sngl.mass1, sngl.mass2) sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta( sngl.mass1, sngl.mass2) sngl_populated = sngl if sngl.snr: sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr network_snrsq += sngl.snr ** 2.0 if 'channel_names' in kwargs and ifo in kwargs['channel_names']: sngl.channel = kwargs['channel_names'][ifo] sngl_inspiral_table.append(sngl) # Set up coinc_map entry coinc_map_row = lsctables.CoincMap() coinc_map_row.table_name = 'sngl_inspiral' coinc_map_row.coinc_event_id = coinc_id coinc_map_row.event_id = sngl.event_id coinc_event_map_table.append(coinc_map_row) if self.snr_series is not None: snr_series_to_xml(self.snr_series[ifo], outdoc, sngl.event_id) # for subthreshold detectors, respect BAYESTAR's assumptions and checks bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x ' 'spin1y spin1z spin2x spin2y spin2z').split() subthreshold_sngl_time = numpy.mean( [coinc_results['foreground/{}/end_time'.format(ifo)] for ifo in ifos]) for sngl in sngl_inspiral_table: if sngl.ifo in followup_ifos: for bcf in bayestar_check_fields: setattr(sngl, bcf, getattr(sngl_populated, bcf)) sngl.set_end(lal.LIGOTimeGPS(subthreshold_sngl_time)) outdoc.childNodes[0].appendChild(coinc_event_map_table) outdoc.childNodes[0].appendChild(sngl_inspiral_table) # Set up the coinc inspiral table coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable) coinc_inspiral_row = lsctables.CoincInspiral() # This seems to be used as FAP, which should not be in gracedb coinc_inspiral_row.false_alarm_rate = 0 coinc_inspiral_row.minimum_duration = 0. coinc_inspiral_row.set_ifos(usable_ifos) coinc_inspiral_row.coinc_event_id = coinc_id coinc_inspiral_row.mchirp = sngl_populated.mchirp coinc_inspiral_row.mass = sngl_populated.mtotal coinc_inspiral_row.end_time = sngl_populated.end_time coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns coinc_inspiral_row.snr = network_snrsq ** 0.5 far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar']) coinc_inspiral_row.combined_far = far coinc_inspiral_table.append(coinc_inspiral_row) outdoc.childNodes[0].appendChild(coinc_inspiral_table) # append the PSDs self.psds = kwargs['psds'] psds_lal = {} for ifo in self.psds: psd = self.psds[ifo] kmin = int(kwargs['low_frequency_cutoff'] / psd.delta_f) fseries = lal.CreateREAL8FrequencySeries( "psd", psd.epoch, kwargs['low_frequency_cutoff'], psd.delta_f, lal.StrainUnit**2 / lal.HertzUnit, len(psd) - kmin) fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC ** 2.0 psds_lal[ifo] = fseries make_psd_xmldoc(psds_lal, outdoc) self.outdoc = outdoc self.time = sngl_populated.get_end()
def __init__(self, ifos, coinc_results): """Initialize a ligolw xml representation of a zerolag trigger for upload from pycbc live to gracedb. Parameters ---------- ifos: list of strs A list of the ifos pariticipating in this trigger coinc_results: dict of values A dictionary of values. The format is define in pycbc/events/coinc.py and matches the on disk representation in the hdf file for this time. """ # remember if this should be marked as HWINJ self.is_hardware_injection = False if 'HWINJ' in coinc_results: self.is_hardware_injection = True # Set up the bare structure of the xml document outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) proc_id = ligolw_process.register_to_xmldoc( outdoc, 'pycbc', {}, ifos=ifos, comment='', version=pycbc_version.git_hash, cvs_repository='pycbc/' + pycbc_version.git_branch, cvs_entry_time=pycbc_version.date).process_id # Set up coinc_definer table coinc_def_table = lsctables.New(lsctables.CoincDefTable) coinc_def_id = lsctables.CoincDefID(0) coinc_def_row = lsctables.CoincDef() coinc_def_row.search = "inspiral" coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs" coinc_def_row.coinc_def_id = coinc_def_id coinc_def_row.search_coinc_type = 0 coinc_def_table.append(coinc_def_row) outdoc.childNodes[0].appendChild(coinc_def_table) # Set up coinc inspiral and coinc event tables coinc_id = lsctables.CoincID(0) coinc_event_table = lsctables.New(lsctables.CoincTable) coinc_event_row = lsctables.Coinc() coinc_event_row.coinc_def_id = coinc_def_id coinc_event_row.nevents = len(ifos) coinc_event_row.instruments = ','.join(ifos) coinc_event_row.time_slide_id = lsctables.TimeSlideID(0) coinc_event_row.process_id = proc_id coinc_event_row.coinc_event_id = coinc_id coinc_event_row.likelihood = 0. coinc_event_table.append(coinc_event_row) outdoc.childNodes[0].appendChild(coinc_event_table) # Set up sngls sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) coinc_event_map_table = lsctables.New(lsctables.CoincMapTable) sngl_id = 0 for ifo in ifos: names = [ n.split('/')[-1] for n in coinc_results if 'foreground/%s' % ifo in n ] sngl_id += 1 sngl = return_empty_sngl() sngl.event_id = lsctables.SnglInspiralID(sngl_id) sngl.ifo = ifo for name in names: val = coinc_results['foreground/%s/%s' % (ifo, name)] if name == 'end_time': sngl.set_end(LIGOTimeGPS(val)) else: try: setattr(sngl, name, val) except AttributeError: pass sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta( sngl.mass1, sngl.mass2) sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta( sngl.mass1, sngl.mass2) sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr sngl_inspiral_table.append(sngl) # Set up coinc_map entry coinc_map_row = lsctables.CoincMap() coinc_map_row.table_name = 'sngl_inspiral' coinc_map_row.coinc_event_id = coinc_id coinc_map_row.event_id = sngl.event_id coinc_event_map_table.append(coinc_map_row) outdoc.childNodes[0].appendChild(coinc_event_map_table) outdoc.childNodes[0].appendChild(sngl_inspiral_table) # Set up the coinc inspiral table coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable) coinc_inspiral_row = lsctables.CoincInspiral() # This seems to be used as FAP, which should not be in gracedb coinc_inspiral_row.false_alarm_rate = 0 coinc_inspiral_row.minimum_duration = 0. coinc_inspiral_row.set_ifos(ifos) coinc_inspiral_row.coinc_event_id = coinc_id coinc_inspiral_row.mchirp = sngl.mchirp coinc_inspiral_row.mass = sngl.mtotal coinc_inspiral_row.end_time = sngl.end_time coinc_inspiral_row.end_time_ns = sngl.end_time_ns coinc_inspiral_row.snr = coinc_results['foreground/stat'] far = 1.0 / (YRJUL_SI * coinc_results['foreground/ifar']) coinc_inspiral_row.combined_far = far coinc_inspiral_table.append(coinc_inspiral_row) outdoc.childNodes[0].appendChild(coinc_inspiral_table) self.outdoc = outdoc
def new(self, row): self.n += 1 a = self.n // 100000 b = self.n % 100000 return lsctables.SnglInspiralID(a * 1000000000 + row.get_id_parts()[1] * 100000 + b)
def __init__(self, ifos, coinc_results, **kwargs): """Initialize a ligolw xml representation of a zerolag trigger for upload from pycbc live to gracedb. Parameters ---------- ifos: list of strs A list of the ifos pariticipating in this trigger coinc_results: dict of values A dictionary of values. The format is defined in pycbc/events/coinc.py and matches the on disk representation in the hdf file for this time. """ self.ifos = ifos if 'followup_ifos' in kwargs and kwargs['followup_ifos'] is not None: self.followup_ifos = kwargs['followup_ifos'] else: self.followup_ifos = [] self.template_id = coinc_results['foreground/%s/template_id' % self.ifos[0]] # remember if this should be marked as HWINJ self.is_hardware_injection = ('HWINJ' in coinc_results) # Set up the bare structure of the xml document outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) proc_id = ligolw_process.register_to_xmldoc( outdoc, 'pycbc', {}, ifos=ifos, comment='', version=pycbc_version.git_hash, cvs_repository='pycbc/' + pycbc_version.git_branch, cvs_entry_time=pycbc_version.date).process_id # Set up coinc_definer table coinc_def_table = lsctables.New(lsctables.CoincDefTable) coinc_def_id = lsctables.CoincDefID(0) coinc_def_row = lsctables.CoincDef() coinc_def_row.search = "inspiral" coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs" coinc_def_row.coinc_def_id = coinc_def_id coinc_def_row.search_coinc_type = 0 coinc_def_table.append(coinc_def_row) outdoc.childNodes[0].appendChild(coinc_def_table) # Set up coinc inspiral and coinc event tables coinc_id = lsctables.CoincID(0) coinc_event_table = lsctables.New(lsctables.CoincTable) coinc_event_row = lsctables.Coinc() coinc_event_row.coinc_def_id = coinc_def_id coinc_event_row.nevents = len(ifos) coinc_event_row.instruments = ','.join(ifos) coinc_event_row.time_slide_id = lsctables.TimeSlideID(0) coinc_event_row.process_id = proc_id coinc_event_row.coinc_event_id = coinc_id coinc_event_row.likelihood = 0. coinc_event_table.append(coinc_event_row) outdoc.childNodes[0].appendChild(coinc_event_table) # Set up sngls sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) coinc_event_map_table = lsctables.New(lsctables.CoincMapTable) sngl_event_id_map = {} sngl_populated = None for sngl_id, ifo in enumerate(ifos + self.followup_ifos): sngl = return_empty_sngl(nones=True) sngl.event_id = lsctables.SnglInspiralID(sngl_id) sngl_event_id_map[ifo] = sngl.event_id sngl.process_id = proc_id sngl.ifo = ifo names = [ n.split('/')[-1] for n in coinc_results if 'foreground/%s' % ifo in n ] for name in names: val = coinc_results['foreground/%s/%s' % (ifo, name)] if name == 'end_time': sngl.set_end(lal.LIGOTimeGPS(val)) else: try: setattr(sngl, name, val) except AttributeError: pass if sngl.mass1 and sngl.mass2: sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta( sngl.mass1, sngl.mass2) sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta( sngl.mass1, sngl.mass2) sngl_populated = sngl if sngl.snr: sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr sngl_inspiral_table.append(sngl) # Set up coinc_map entry coinc_map_row = lsctables.CoincMap() coinc_map_row.table_name = 'sngl_inspiral' coinc_map_row.coinc_event_id = coinc_id coinc_map_row.event_id = sngl.event_id coinc_event_map_table.append(coinc_map_row) # for subthreshold detectors, respect BAYESTAR's assumptions and checks bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x ' 'spin1y spin1z spin2x spin2y spin2z').split() subthreshold_sngl_time = numpy.mean( [coinc_results['foreground/%s/end_time' % ifo] for ifo in ifos]) for sngl in sngl_inspiral_table: if sngl.ifo in self.followup_ifos: for bcf in bayestar_check_fields: setattr(sngl, bcf, getattr(sngl_populated, bcf)) sngl.set_end(lal.LIGOTimeGPS(subthreshold_sngl_time)) outdoc.childNodes[0].appendChild(coinc_event_map_table) outdoc.childNodes[0].appendChild(sngl_inspiral_table) # Set up the coinc inspiral table coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable) coinc_inspiral_row = lsctables.CoincInspiral() # This seems to be used as FAP, which should not be in gracedb coinc_inspiral_row.false_alarm_rate = 0 coinc_inspiral_row.minimum_duration = 0. coinc_inspiral_row.set_ifos(ifos) coinc_inspiral_row.coinc_event_id = coinc_id coinc_inspiral_row.mchirp = sngl_populated.mchirp coinc_inspiral_row.mass = sngl_populated.mtotal coinc_inspiral_row.end_time = sngl_populated.end_time coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns coinc_inspiral_row.snr = coinc_results['foreground/stat'] far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar']) coinc_inspiral_row.combined_far = far coinc_inspiral_table.append(coinc_inspiral_row) outdoc.childNodes[0].appendChild(coinc_inspiral_table) self.outdoc = outdoc self.time = sngl_populated.get_end() # compute SNR time series self.upload_snr_series = kwargs['upload_snr_series'] if self.upload_snr_series: htilde = kwargs['bank'][self.template_id] self.snr_series = {} self.snr_series_psd = {} for ifo in self.ifos + self.followup_ifos: if ifo in ifos: trig_time = coinc_results['foreground/%s/end_time' % ifo] else: trig_time = subthreshold_sngl_time self.snr_series[ifo], self.snr_series_psd[ifo] = \ compute_followup_snr_series( kwargs['data_readers'][ifo], htilde, trig_time) snr_series_to_xml(self.snr_series[ifo], outdoc, sngl_event_id_map[ifo])
def find_slide_coincs(htrigs, ltrigs, min_mchirp, max_mchirp, ethinca, slide, threshold): """ Calculate coincs from single detector triggers. We window based on mchirp, apply a new snr threshold, and only keep triggers that lie on a slide boundary. """ coinc_sngls = lsctables.New(lsctables.SnglInspiralTable) num_trig = 0 t_snrsq = float(threshold)**2 # Collect the mchirp, new snr, and end time of the second detector's # triggers into numpy arrays for faster math operations later. l_ends = [] lt_mc = [] lt_sn = [] lt_en = [] for l in ltrigs: lt_mc.append(l.mchirp) lt_sn.append(l.get_new_snr()**2) lt_en.append(float(l.get_end())) lt_mc = numpy.array(lt_mc) lt_sn = numpy.array(lt_sn) lt_en = numpy.array(lt_en) # The list of index location of "good" triggers in the second detector # good triggers are ones that might possibly still form coincs with the # first detector's triggers. Initially, this is all of them. loc = numpy.arange(0, len(ltrigs)) # Sort the first detector's triggers by newsnr ascending stats = [] htrigs.sort(lambda a, b: cmp(a.get_new_snr(), b.get_new_snr()), reverse=True) # Iterate over each of the first detector's triggers and calculate what # coincs it will generate with the second detector's triggers for h in htrigs: h_end = float(h.get_end()) h_mchirp = h.mchirp h_max_td = max_dt(h, ethinca) h_snrsq = h.get_new_snr()**2 r_snrsq = t_snrsq - h_snrsq lind = 0 # Grab only the information about triggers that could still form # coincs lt_snl = lt_sn[loc] lt_mcl = lt_mc[loc] lt_enl = lt_en[loc] # Determine the time difference between these triggers and the # considered "h" trigger num_slides = numpy.round((h_end - lt_enl) / slide) lt_en_tmp = lt_enl + num_slides * slide td = abs(h_end - lt_en_tmp) # Get location of coincs that are above the coinc new snr threshold # Triggers that fall below this threshold are never considered again goods = (lt_snl >= r_snrsq) # Get the location of coincs that pass the rough time coincidence # and are within the mchirp bin. We calculate ethinca only for these. good = goods & (td <= h_max_td) & ( lt_mcl >= 2 * min_mchirp - h_mchirp) & (lt_mcl <= 2 * max_mchirp - h_mchirp) # For each remaining trigger we calculate the ethinca test and add # to the list of coincs if they pass for lind, ns in zip(loc[good], num_slides[good]): # don't allow zerolag or offsets too close to it! if abs(slide * ns) < 0.1: continue # Get the single inspiral trigger and apply the time offset # so that we can perform coincidence l = ltrigs[lind] l_end_old = l.get_end() l_end_tmp = l_end_old + float(slide * ns) l.set_end(l_end_tmp) epar = XLALCalculateEThincaParameter(h, l) # If we pass coincidence we add the first and second detector # trigger pair to the output list if epar < ethinca: # This should never happen if abs(slide * ns) < 0.1: print 'I USED ZEROLAG!!' exit(1) hcopy = copy.deepcopy(h) l.set_end(h.get_end()) lcopy = copy.deepcopy(l) hcopy.event_id = lsctables.SnglInspiralID(num_trig) lcopy.event_id = lsctables.SnglInspiralID(num_trig) num_trig += 1 coinc_sngls.append(hcopy) coinc_sngls.append(lcopy) l.set_end(l_end_old) # Finally set the list of second triggers to consider to the reduced # set that are still above the coinc new snr threshold loc = loc[goods] # No more triggers to consider if len(loc) == 0: break return (coinc_sngls)
def __init__(self, ifos, coinc_results, **kwargs): """Initialize a ligolw xml representation of a zerolag trigger for upload from pycbc live to gracedb. Parameters ---------- ifos: list of strs A list of the ifos pariticipating in this trigger coinc_results: dict of values A dictionary of values. The format is define in pycbc/events/coinc.py and matches the on disk representation in the hdf file for this time. """ self.ifos = ifos self.template_id = coinc_results['foreground/%s/template_id' % self.ifos[0]] # remember if this should be marked as HWINJ self.is_hardware_injection = False if 'HWINJ' in coinc_results: self.is_hardware_injection = True # Set up the bare structure of the xml document outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) proc_id = ligolw_process.register_to_xmldoc( outdoc, 'pycbc', {}, ifos=ifos, comment='', version=pycbc_version.git_hash, cvs_repository='pycbc/' + pycbc_version.git_branch, cvs_entry_time=pycbc_version.date).process_id # Set up coinc_definer table coinc_def_table = lsctables.New(lsctables.CoincDefTable) coinc_def_id = lsctables.CoincDefID(0) coinc_def_row = lsctables.CoincDef() coinc_def_row.search = "inspiral" coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs" coinc_def_row.coinc_def_id = coinc_def_id coinc_def_row.search_coinc_type = 0 coinc_def_table.append(coinc_def_row) outdoc.childNodes[0].appendChild(coinc_def_table) # Set up coinc inspiral and coinc event tables coinc_id = lsctables.CoincID(0) coinc_event_table = lsctables.New(lsctables.CoincTable) coinc_event_row = lsctables.Coinc() coinc_event_row.coinc_def_id = coinc_def_id coinc_event_row.nevents = len(ifos) coinc_event_row.instruments = ','.join(ifos) coinc_event_row.time_slide_id = lsctables.TimeSlideID(0) coinc_event_row.process_id = proc_id coinc_event_row.coinc_event_id = coinc_id coinc_event_row.likelihood = 0. coinc_event_table.append(coinc_event_row) outdoc.childNodes[0].appendChild(coinc_event_table) # Set up sngls sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable) coinc_event_map_table = lsctables.New(lsctables.CoincMapTable) sngl_id = 0 sngl_event_id_map = {} for ifo in ifos: names = [ n.split('/')[-1] for n in coinc_results if 'foreground/%s' % ifo in n ] sngl_id += 1 sngl = return_empty_sngl() sngl.event_id = lsctables.SnglInspiralID(sngl_id) sngl_event_id_map[ifo] = sngl.event_id sngl.ifo = ifo for name in names: val = coinc_results['foreground/%s/%s' % (ifo, name)] if name == 'end_time': sngl.set_end(lal.LIGOTimeGPS(val)) else: try: setattr(sngl, name, val) except AttributeError: pass sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta( sngl.mass1, sngl.mass2) sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta( sngl.mass1, sngl.mass2) sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr sngl_inspiral_table.append(sngl) # Set up coinc_map entry coinc_map_row = lsctables.CoincMap() coinc_map_row.table_name = 'sngl_inspiral' coinc_map_row.coinc_event_id = coinc_id coinc_map_row.event_id = sngl.event_id coinc_event_map_table.append(coinc_map_row) outdoc.childNodes[0].appendChild(coinc_event_map_table) outdoc.childNodes[0].appendChild(sngl_inspiral_table) # Set up the coinc inspiral table coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable) coinc_inspiral_row = lsctables.CoincInspiral() # This seems to be used as FAP, which should not be in gracedb coinc_inspiral_row.false_alarm_rate = 0 coinc_inspiral_row.minimum_duration = 0. coinc_inspiral_row.set_ifos(ifos) coinc_inspiral_row.coinc_event_id = coinc_id coinc_inspiral_row.mchirp = sngl.mchirp coinc_inspiral_row.mass = sngl.mtotal coinc_inspiral_row.end_time = sngl.end_time coinc_inspiral_row.end_time_ns = sngl.end_time_ns coinc_inspiral_row.snr = coinc_results['foreground/stat'] far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar']) coinc_inspiral_row.combined_far = far coinc_inspiral_table.append(coinc_inspiral_row) outdoc.childNodes[0].appendChild(coinc_inspiral_table) self.outdoc = outdoc self.time = sngl.get_end() # compute SNR time series self.upload_snr_series = kwargs['upload_snr_series'] if self.upload_snr_series: data_readers = kwargs['data_readers'] bank = kwargs['bank'] htilde = bank[self.template_id] self.snr_series = {} self.snr_series_psd = {} for ifo in self.ifos: stilde = data_readers[ifo].overwhitened_data(htilde.delta_f) norm = 4.0 * htilde.delta_f / (htilde.sigmasq(stilde.psd)**0.5) qtilde = zeros((len(htilde) - 1) * 2, dtype=htilde.dtype) correlate(htilde, stilde, qtilde) snr = qtilde * 0 ifft(qtilde, snr) valid_end = int(len(qtilde) - data_readers[ifo].trim_padding) valid_start = int(valid_end - data_readers[ifo].blocksize * data_readers[ifo].sample_rate) seg = slice(valid_start, valid_end) snr = snr[seg] snr *= norm delta_t = 1.0 / data_readers[ifo].sample_rate start = data_readers[ifo].start_time snr = TimeSeries(snr, delta_t=delta_t, epoch=start) self.snr_series[ifo] = snr self.snr_series_psd[ifo] = stilde.psd # store the on-source slice of the series into the XML doc snr_onsource_time = coinc_results['foreground/%s/end_time' % ifo] - snr.start_time snr_onsource_dur = lal.REARTH_SI / lal.C_SI onsource_idx = round(snr_onsource_time * snr.sample_rate) onsource_start = onsource_idx - int( snr.sample_rate * snr_onsource_dur / 2) onsource_end = onsource_idx + int( snr.sample_rate * snr_onsource_dur / 2) onsource_slice = slice(onsource_start, onsource_end + 1) snr_lal = snr[onsource_slice].lal() snr_lal.name = 'snr' snr_lal.sampleUnits = '' snr_xml = _build_series(snr_lal, (u'Time', u'Time,Real,Imaginary'), None, 'deltaT', 's') snr_node = outdoc.childNodes[-1].appendChild(snr_xml) eid_param = ligolw_param.new_param( u'event_id', u'ilwd:char', unicode(sngl_event_id_map[ifo])) snr_node.appendChild(eid_param)