def get_dataloader(net, train_dataset, val_dataset, data_shape, batch_size, num_workers, ctx): """Get dataloader.""" width, height = data_shape, data_shape num_class = len(train_dataset.classes) batchify_fn = Tuple([Stack() for _ in range(6) ]) # stack image, cls_targets, box_targets train_loader = gluon.data.DataLoader(train_dataset.transform( CenterNetDefaultTrainTransform(width, height, num_class=num_class, scale_factor=net.scale)), batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers) val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1)) val_loader = gluon.data.DataLoader(val_dataset.transform( CenterNetDefaultValTransform(width, height)), batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers) return train_loader, val_loader
def get_dataloader(val_dataset, data_shape, batch_size, num_workers): """Get dataloader.""" width, height = data_shape, data_shape batchify_fn = Tuple(Stack(), Pad(pad_val=-1)) val_loader = gluon.data.DataLoader( val_dataset.transform(CenterNetDefaultValTransform(width, height)), batch_size, False, last_batch='keep', num_workers=num_workers, batchify_fn=batchify_fn, ) return val_loader