def test_bart(model_name): # test from pretrained assert len(list_pretrained_bart()) > 0 with tempfile.TemporaryDirectory() as root: cfg, tokenizer, params_path, _ =\ get_pretrained_bart(model_name, load_backbone=True, root=root) assert cfg.MODEL.vocab_size == len(tokenizer.vocab) # test standard bart encoder and decoder bart_model = BartModel.from_cfg(cfg) bart_model.load_parameters(params_path) # test bart encoder and decoder with pooler bart_model_with_pooler = BartModel.from_cfg( cfg, use_pooler=True, classifier_activation=False) bart_model_with_pooler.load_parameters(params_path)
def test_list_pretrained_bart(): assert len(list_pretrained_bart()) > 0
import numpy as np import numpy.testing as npt from gluonnlp.models.bart import BartModel, \ list_pretrained_bart, get_pretrained_bart, bart_cfg_reg from gluonnlp.utils.testing import verify_backbone_fp16 mx.npx.set_np() def test_list_pretrained_bart(): assert len(list_pretrained_bart()) > 0 @pytest.mark.slow @pytest.mark.remote_required @pytest.mark.parametrize('model_name', list_pretrained_bart()) def test_bart(model_name): # test from pretrained assert len(list_pretrained_bart()) > 0 with tempfile.TemporaryDirectory() as root: cfg, tokenizer, params_path, _ =\ get_pretrained_bart(model_name, load_backbone=True, root=root) assert cfg.MODEL.vocab_size == len(tokenizer.vocab) # test standard bart encoder and decoder bart_model = BartModel.from_cfg(cfg) bart_model.load_parameters(params_path) # test bart encoder and decoder with pooler bart_model_with_pooler = BartModel.from_cfg( cfg, use_pooler=True, classifier_activation=False) bart_model_with_pooler.load_parameters(params_path)