def test_transformer_cfg_registry(): assert len(transformer_cfg_reg.list_keys()) > 0
layout=layout) inference_model = TransformerInference(model=model) model.initialize() if train_hybridize: model.hybridize() verify_nmt_model(model) if inference_hybridize: inference_model.hybridize() verify_nmt_inference(train_model=model, inference_model=inference_model) def test_transformer_cfg_registry(): assert len(transformer_cfg_reg.list_keys()) > 0 @pytest.mark.parametrize('cfg_key', transformer_cfg_reg.list_keys()) def test_transformer_cfg(cfg_key): cfg = TransformerModel.get_cfg(cfg_key) cfg.defrost() cfg.MODEL.src_vocab_size = 32 cfg.MODEL.tgt_vocab_size = 32 cfg.freeze() model = TransformerModel.from_cfg(cfg) model.initialize() model.hybridize() cfg.defrost() cfg.MODEL.layout = 'TN' cfg.freeze() model_tn = TransformerModel.from_cfg(cfg) model_tn.share_parameters(model.collect_params()) model_tn.hybridize()