コード例 #1
0
    def distribution(
        self,
        distr_args,
        loc: Optional[Tensor] = None,
        scale: Optional[Tensor] = None,
    ) -> Distribution:
        r"""
        Construct the associated distribution, given the collection of
        constructor arguments and, optionally, a scale tensor.

        Parameters
        ----------
        distr_args
            Constructor arguments for the underlying Distribution type.
        loc
            Optional tensor, of the same shape as the
            batch_shape+event_shape of the resulting distribution.
        scale
            Optional tensor, of the same shape as the
            batch_shape+event_shape of the resulting distribution.
        """
        if loc is None and scale is None:
            return self.distr_cls(*distr_args)
        else:
            distr = self.distr_cls(*distr_args)
            return TransformedDistribution(
                distr, [AffineTransformation(loc=loc, scale=scale)])
コード例 #2
0
 def distribution(self,
                  distr_args,
                  scale: Optional[Tensor] = None,
                  **kwargs) -> PiecewiseLinear:
     if scale is None:
         return self.distr_cls(*distr_args)
     else:
         distr = self.distr_cls(*distr_args)
         return TransformedPiecewiseLinear(
             distr, AffineTransformation(scale=scale))
コード例 #3
0
 def distribution(self,
                  distr_args,
                  scale: Optional[Tensor] = None) -> Distribution:
     r"""
     Construct the associated distribution, given the collection of
     constructor arguments and, optionally, a scale tensor.
     """
     if scale is None:
         return self.distr_cls(*distr_args)
     else:
         distr = self.distr_cls(*distr_args)
         return TransformedDistribution(distr,
                                        AffineTransformation(scale=scale))
コード例 #4
0
    def distribution(self,
                     distr_args,
                     scale: Optional[Tensor] = None,
                     **kwargs) -> Distribution:
        distr_args, transforms_args = self._split_args(distr_args)
        distr = self.base_distr_output.distr_cls(*distr_args)
        transforms = [
            transform_output.bij_cls(*bij_args) for transform_output, bij_args
            in zip(self.transforms_output, transforms_args)
        ]

        trans_distr = TransformedDistribution(distr, transforms)

        # Apply scaling as well at the end if scale is not None!
        if scale is None:
            return trans_distr
        else:
            return TransformedDistribution(trans_distr,
                                           AffineTransformation(scale=scale))
コード例 #5
0
                     F=mx.nd, x=mx.nd.ones(shape=(3, 4, 5)), d=5),
             ),
         ],
     ),
     (3, 4),
     (5, ),
 ),
 (
     TransformedDistribution(
         StudentT(
             mu=mx.nd.zeros(shape=(3, 4, 5)),
             sigma=mx.nd.ones(shape=(3, 4, 5)),
             nu=mx.nd.ones(shape=(3, 4, 5)),
         ),
         [
             AffineTransformation(scale=1e-1 +
                                  mx.nd.random.uniform(shape=(3, 4, 5)))
         ],
     ),
     (3, 4, 5),
     (),
 ),
 (
     TransformedDistribution(
         MultivariateGaussian(
             mu=mx.nd.zeros(shape=(3, 4, 5)),
             L=make_nd_diag(F=mx.nd, x=mx.nd.ones(shape=(3, 4, 5)),
                            d=5),
         ),
         [
             AffineTransformation(scale=1e-1 +
                                  mx.nd.random.uniform(shape=(3, 4, 5)))