コード例 #1
0
def anomaly_gluonts(lista_datos,
                    num_fut,
                    desv_mse=0,
                    train=True,
                    name='model-name'):
    lista_puntos = np.arange(0, len(lista_datos), 1)
    df, df_train, df_test = create_train_test(lista_puntos, lista_datos)

    data_list = [{
        "start": "01-01-2012 04:05:00",
        "target": df_train['valores'].values
    }]

    dataset = ListDataset(data_iter=data_list, freq="5min")

    trainer = Trainer(epochs=15)
    estimator = deepar.DeepAREstimator(freq="5min",
                                       prediction_length=len(
                                           df_test['valores']),
                                       trainer=trainer)
    predictor = estimator.train(training_data=dataset)

    prediction = next(predictor.predict(dataset))

    engine = engine_output_creation('gluonts')
    engine.alerts_creation(prediction.mean.tolist(), df_test)
    engine.debug_creation(prediction.mean.tolist(), df_test)
    print('longitud del test' + str(df_test.shape) + 'frente a la prediccion' +
          str(len(prediction.mean.tolist())))
    engine.metrics_generation(df_test['valores'].values,
                              prediction.mean.tolist())

    ############## ANOMALY FINISHED,
    print("Anomaly finished. Start forecasting")
    ############## FORECAST START

    data_list = [{
        "start": "01-01-2012 04:05:00",
        "target": df['valores'].values
    }]

    dataset = ListDataset(data_iter=data_list, freq="5min")

    trainer = Trainer(epochs=15)
    estimator = deepar.DeepAREstimator(freq="5min",
                                       prediction_length=num_fut,
                                       trainer=trainer)
    predictor = estimator.train(training_data=dataset)

    prediction = next(predictor.predict(dataset))

    engine.forecast_creation(prediction.mean.tolist(), len(lista_datos),
                             num_fut)
    return (engine.engine_output)
コード例 #2
0
def test_symbol_and_array(hybridize: bool):
    # Tests for cases like the one presented in issue 1211, in which the Inflated
    # Beta outputs used a method only available to arrays and not to symbols.
    # We simply go through a short training to ensure no exceptions are raised.
    data = [
        {
            "target": [0, 0.0460043, 0.263906, 0.4103112, 1],
            "start": pd.to_datetime("1999-01-04"),
        },
        {
            "target": [1, 0.65815564, 0.44982578, 0.58875054, 0],
            "start": pd.to_datetime("1999-01-04"),
        },
    ]
    dataset = common.ListDataset(data, freq="W-MON", one_dim_target=True)

    trainer = Trainer(epochs=1, num_batches_per_epoch=2, hybridize=hybridize)

    estimator = deepar.DeepAREstimator(
        freq="W",
        prediction_length=2,
        trainer=trainer,
        distr_output=ZeroAndOneInflatedBetaOutput(),
        context_length=2,
        batch_size=1,
        scaling=False,
    )

    estimator.train(dataset)
コード例 #3
0
ファイル: startup_gluonts.py プロジェクト: selvaHome/gluonts
def build_deepar_model():
    # get the financial data "exchange_rate"
    gluon_data = get_dataset("exchange_rate", regenerate=True)
    train_data = next(iter(gluon_data.train))
    test_data = next(iter(gluon_data.test))
    meta_data = gluon_data.metadata

    # data set visualisation
    fig, ax = plt.subplots(1, 1, figsize=(11, 8))
    to_pandas(train_data).plot(ax=ax)
    ax.grid(which="both")
    ax.legend(["train data"], loc="upper left")
    plt.savefig("dataset.png")

    # visualize various members of the 'gluon_data.*'
    print(train_data.keys())
    print(test_data.keys())
    print(meta_data)

    # convert dataset into an object recognised by GluonTS
    training_data = common.ListDataset(gluon_data.train, freq=meta_data.freq)
    testing_data = common.ListDataset(gluon_data.test, freq=meta_data.freq)

    # create an Estimator with DeepAR
    # an object of Trainer() class is used to customize Estimator
    estimator = deepar.DeepAREstimator(
        freq=meta_data.freq,
        prediction_length=meta_data.prediction_length,
        trainer=Trainer(ctx="cpu", epochs=100, learning_rate=1e-4))

    # create a Predictor by training the Estimator with training dataset
    predictor = estimator.train(training_data=training_data)

    # make predictions
    forecasts, test_series = make_evaluation_predictions(dataset=testing_data,
                                                         predictor=predictor,
                                                         num_samples=10)

    # visualise forecasts
    prediction_intervals = (50.0, 90.0)
    legend = ["actual data", "median forecast"
              ] + [f"{k}% forecast interval"
                   for k in prediction_intervals][::-1]
    fig, ax = plt.subplots(1, 1, figsize=(11, 8))
    list(test_series)[0][-150:].plot(ax=ax)  # plot the time series
    list(forecasts)[0].plot(prediction_intervals=prediction_intervals,
                            color='r')
    plt.grid(which="both")
    plt.legend(legend, loc="upper left")
    plt.savefig("deepar-model.png")
コード例 #4
0
from gluonts.model import deepar
from gluonts.dataset import common
from gluonts.dataset.util import to_pandas
from gluonts.model.predictor import Predictor

# 数据加载
df = pd.read_csv('/home/zhouxi/pig.csv', header=0, index_col=0)
data = common.ListDataset([{
    "start": df.index[100],
    "target": df.price[:"2018-12-05 00:00:00"]
}],
                          freq="D")
train_data = data

# 模型训练
estimator = deepar.DeepAREstimator(freq="D", prediction_length=10)
predictor = estimator.train(training_data=data)

# 模型预测和绘图
for test_entry, forecast in zip(train_data, predictor.predict(train_data)):
    to_pandas(test_entry)[-60:].plot(linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')
plt.show()

prediction = next(predictor.predict(train_data))
print(prediction.mean)
prediction.plot(output_file='graph.png')

# 模型存储
predictor.serialize(Path("/home/zhouxi/my_product/ai_test/lstm/model/"))
コード例 #5
0
from gluonts.dataset import common
from gluonts.dataset.util import to_pandas
from gluonts.model.predictor import Predictor

train_data = common.FileDataset(
    "/home/root/mxnetTS/GluonTS-Learning-in-Action/chapter-2/data/train",
    freq="H")
test_data = common.FileDataset(
    "/home/root/mxnetTS/GluonTS-Learning-in-Action/chapter-2/data/val",
    freq="H")

estimator = deepar.DeepAREstimator(prediction_length=24,
                                   context_length=100,
                                   use_feat_static_cat=True,
                                   use_feat_dynamic_real=True,
                                   num_parallel_samples=100,
                                   cardinality=[2, 1],
                                   freq="H",
                                   trainer=Trainer(ctx="cpu",
                                                   epochs=200,
                                                   learning_rate=1e-3))
predictor = estimator.train(training_data=train_data)

for test_entry, forecast in zip(test_data, predictor.predict(test_data)):
    to_pandas(test_entry)[-100:].plot(figsize=(12, 5), linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')
plt.legend([
    "past observations", "median prediction", "90% prediction interval",
    "50% prediction interval"
])
plt.show()
コード例 #6
0
import pandas as pd
import matplotlib.pyplot as plt
csv_path = '/Users/seenli/Documents/workspace/code/pytorch_learn2/time_series_DL/Twitter_volume_AMZN.csv'
df = pd.read_csv(csv_path,header=0,sep=',')
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index(['timestamp'],inplace=True)

# print(df.value[:"2015-04-22 20:47:53"]) # 最后的时间戳是包含[2015-04-22 20:47:53]
# print(df.value[:"2015-04-23 20:47:53"]) # 如果所给时间戳超出了数据的范围的时候就会输出有的数据
# print("开始时间戳", df.index[0]) # start是开始的时间戳,target对应的是对应时间戳的序列信息
data = common.ListDataset([{'start': df.index[0], 'target': df.value[:"2015-04-22 21:00:00"]}], freq='H')#这个数据格式是固定的
# 这里df.index是时间戳,df.value是时间戳对应的值

estimator = deepar.DeepAREstimator(
    freq='H',
    prediction_length=24,
    trainer=Trainer(epochs=50)
)

predictor = estimator.train(training_data=data)

predictor.serialize(Path("/Users/seenli/Documents/workspace/code/pytorch_learn2/time_series_DL/model_save"))
for train_entry, predict_result in zip(data, predictor.predict(data)):
    to_pandas(train_entry)[-60:].plot(linewidth=2)
    predict_result.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')
plt.show()
##输出预测结果
prediction = next(predictor.predict(data))
print(prediction.mean)
prediction.plot(output_file='graph.png')
コード例 #7
0
ファイル: forecast.py プロジェクト: Naaapp/MasterThesis
def forecast_dataset(dataset,
                     epochs=100,
                     learning_rate=1e-3,
                     num_samples=100,
                     model="SimpleFeedForward",
                     r_method="ets",
                     alpha=0,
                     distrib="Gaussian"):
    if distrib == "Gaussian":
        distr_output = GaussianOutput()
    elif distrib == "Laplace":
        distr_output = LaplaceOutput()
    elif distrib == "PiecewiseLinear":
        distr_output = PiecewiseLinearOutput(num_pieces=2)
    elif distrib == "Uniform":
        distr_output = UniformOutput()
    elif distrib == "Student":
        distr_output = StudentTOutput()
    else:
        distr_output = None

    if model != "GaussianProcess":
        ctx = mx.Context("gpu")
    else:
        ctx = mx.Context("cpu")

    # Trainer
    trainer = Trainer(epochs=epochs,
                      learning_rate=learning_rate,
                      num_batches_per_epoch=100,
                      ctx=ctx,
                      hybridize=True if model[0] != "c" else False)

    # Estimator (if machine learning model)
    if model == "SimpleFeedForward":  # 10s / epochs for context 60*24
        estimator = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[10],
            prediction_length=dataset.prediction_length,
            context_length=dataset.context_length,
            freq=dataset.freq,
            trainer=trainer,
            distr_output=distr_output)
    elif model == "cSimpleFeedForward":  # 10s / epochs for context 60*24
        estimator = CustomSimpleFeedForwardEstimator(
            prediction_length=dataset.prediction_length,
            context_length=dataset.context_length,
            freq=dataset.freq,
            trainer=trainer,
            num_cells=40,
            alpha=alpha,
            distr_output=distr_output,
            distr_output_type=distrib)
    elif model == "CanonicalRNN":  # 80s /epochs for context 60*24, idem for 60*1
        estimator = canonical.CanonicalRNNEstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepAr":
        estimator = deepar.DeepAREstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepFactor":  # 120 s/epochs if one big time serie, 1.5s if 183 time series
        estimator = deep_factor.DeepFactorEstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepState":  # Very slow on cpu
        estimator = deepstate.DeepStateEstimator(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            cardinality=list([1]),
            use_feat_static_cat=False)
    elif model == "GaussianProcess":  # CPU / GPU problem
        estimator = gp_forecaster.GaussianProcessEstimator(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            cardinality=1)
    elif model == "NPTS":
        estimator = npts.NPTSEstimator(
            freq=dataset.freq, prediction_length=dataset.prediction_length)
    elif model == "MQCNN":
        estimator = seq2seq.MQCNNEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            quantiles=list([0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]))
    elif model == "MQRNN":
        estimator = seq2seq.MQRNNEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            quantiles=list([0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]))
    elif model == "RNN2QR":  # Must be investigated
        estimator = seq2seq.RNN2QRForecaster(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            cardinality=dataset.cardinality,
            embedding_dimension=1,
            encoder_rnn_layer=1,
            encoder_rnn_num_hidden=1,
            decoder_mlp_layer=[1],
            decoder_mlp_static_dim=1)
    elif model == "SeqToSeq":  # Must be investigated
        estimator = seq2seq.Seq2SeqEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            cardinality=[1],
            embedding_dimension=1,
            decoder_mlp_layer=[1],
            decoder_mlp_static_dim=1,
            encoder=Seq2SeqEncoder())
    elif model == "Transformer":  # Make the computer lag the first time
        estimator = transformer.TransformerEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer)

    else:
        estimator = None

    # Predictor (directly if non machine learning model and from estimator if machine learning)
    if model == "Prophet":
        predictor = prophet.ProphetPredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
        )
    elif model == "R":
        predictor = r_forecast.RForecastPredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            method_name=r_method)
    elif model == "SeasonalNaive":
        predictor = seasonal_naive.SeasonalNaivePredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            season_length=24)
    else:
        predictor = estimator.train(dataset.train_ds)
        if model[0] != "c":
            predictor.serialize(Path("temp"))
            predictor = Predictor.deserialize(
                Path("temp"), ctx=mx.cpu(0))  # fix for deepstate

    # Evaluate
    forecast_it, ts_it = make_evaluation_predictions(
        dataset=dataset.test_ds,  # test dataset
        predictor=predictor,  # predictor
        num_samples=num_samples,  # num of sample paths we want for evaluation
    )

    return list(forecast_it), list(ts_it)
コード例 #8
0
ファイル: deepar.py プロジェクト: syyunn/gluonts
timesteps = df['Date']
start = timesteps[0]
custom_dataset = np.array(df['KRW/USD'])

# NUMPY PHASE
N = 1  # number of classes in time series
T = len(custom_dataset)  # number of time steps

prediction_length = 100
freq = "1D"

# CONVERSION TO GLUON PHASE
from gluonts.dataset.common import ListDataset

# # train is less of "prediction length" compared to test dataset
train_ds = ListDataset([{'target': custom_dataset, 'start': start}], freq=freq)
# # test dataset: use the whole dataset, add "target" and "start" fields
test_ds = ListDataset([{'target': custom_dataset, 'start': start}], freq=freq)

estimator = deepar.DeepAREstimator(freq=freq,
                                   prediction_length=prediction_length)

predictor = estimator.train(training_data=train_ds)

prediction = next(predictor.predict(train_ds))
print(prediction.mean)
prediction.plot(output_file='graph.png')

if __name__ == "__main__":
    pass
コード例 #9
0
ファイル: Model.py プロジェクト: mnalley95/Dispensers
        "Name": "test:smape",
        "Regex": r"gluonts\[metric-sMAPE\]: (\S+)"
    },
    {
        "Name": "test:wmape",
        "Regex": r"gluonts\[metric-wMAPE\]: (\S+)"
    },
]

estimator = deepar.DeepAREstimator(
    prediction_length=gluonts_datasets.metadata.prediction_length,
    freq=gluonts_datasets.metadata.freq,
    cardinality=[
        gluonts_datasets.metadata.feat_static_cat[0].cardinality,
        gluonts_datasets.metadata.feat_static_cat[1].cardinality,
        gluonts_datasets.metadata.feat_static_cat[2].cardinality
    ],
    use_feat_static_cat=True,
    # use_feat_dynamic_real=True,
    #use_feat_dynamic_cat = True,
    # use_feat_static_real=True,
    #time_features= time_features,
    trainer=Trainer(epochs=epochs))

estimator = deepstate.DeepStateEstimator(
    prediction_length=gluonts_datasets.metadata.prediction_length,
    freq=gluonts_datasets.metadata.freq,
    cardinality=[
        gluonts_datasets.metadata.feat_static_cat[0].cardinality,
        gluonts_datasets.metadata.feat_static_cat[1].cardinality,
        gluonts_datasets.metadata.feat_static_cat[2].cardinality
    ],
コード例 #10
0
df = pd.read_csv(csv_path, header=0, sep=',')
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index(['timestamp'], inplace=True)

# print(df.value[:"2015-04-22 20:47:53"]) # 最后的时间戳是包含[2015-04-22 20:47:53]
# print(df.value[:"2015-04-23 20:47:53"]) # 如果所给时间戳超出了数据的范围的时候就会输出有的数据
# print("开始时间戳", df.index[0]) # start是开始的时间戳,target对应的是对应时间戳的序列信息

data = common.ListDataset([{
    'start': df.index[0],
    'target': df.value[:"2015-04-22 21:00:00"]
}],
                          freq='H')  #这个数据格式是固定的
# 这里df.index是时间戳,df.value是时间戳对应的值

estimator = deepar.DeepAREstimator(freq='H', prediction_length=24)
predictor = Predictor.deserialize(
    Path(
        "/Users/seenli/Documents/workspace/code/pytorch_learn2/time_series_DL/model_save"
    ))
# predictor.serialize(Path("/Users/seenli/Documents/workspace/code/pytorch_learn2/time_series_DL/model_save"))

print("data:", data)
print('....' * 5)
print(predictor.predict(data))
print('####' * 5)
for train_entry, predict_result in zip(data, predictor.predict(data)):
    print(to_pandas(train_entry)[:60])
    print('-------' * 4)
    print(to_pandas(train_entry)
          [-60:])  # 这里把最后的60个输出,其中每个数据的时间戳是小时,时间的起点为2015-02-26 21:00:00
コード例 #11
0
from gluonts.dataset import common
from gluonts.model import deepar

import pandas as pd

url = "https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv"
df = pd.read_csv(url, header=0, index_col=0)
data = common.ListDataset([{
    "start": df.index[0],
    "target": df.value[:"2015-04-05 00:00:00"]
}],
                          freq="5min")

estimator = deepar.DeepAREstimator(freq="5min", prediction_length=12)
predictor = estimator.train(training_data=data)

prediction = next(predictor.predict(data))
print(prediction.mean)
prediction.plot(output_file='graph.png')
コード例 #12
0
    def train_and_predict(code, start_date, end_date, data_path, predict_path):
        predict_days = 2
        csv = os.path.join(data_path, '{code}.csv'.format(code=code))
        df = pd.read_csv(csv)

        # skip training data lenght < 360
        if len(df) < 360:
            return False

        # set DT as index, TCLOSE as label and order by DT desc
        df.set_axis([
            'DT', 'CODE', 'NAME', 'TCLOSE', 'HIGH', 'LOW', 'TOPEN', 'LCLOSE',
            'CHG', 'PCHG', 'TURNOVER', 'VOTURNOVER', 'VATURNOVER', 'TCAP',
            'MCAP'
        ],
                    axis='columns',
                    inplace=True)
        df.drop([
            'CODE', 'NAME', 'HIGH', 'LOW', 'TOPEN', 'LCLOSE', 'CHG', 'PCHG',
            'TURNOVER', 'VOTURNOVER', 'VATURNOVER', 'TCAP', 'MCAP'
        ],
                axis=1,
                inplace=True)
        df.set_index(['DT'], inplace=True)
        df = df.iloc[df.index.argsort()]

        # fill the lost DT and label (TCLOSE) with last available exchange day's value
        all_dt = [(datetime.strptime(df.index[0], "%Y-%m-%d") +
                   timedelta(days=i)).__format__('%Y-%m-%d')
                  for i in range(1, (
                      datetime.strptime(end_date, "%Y%m%d") -
                      datetime.strptime(df.index[0], "%Y-%m-%d")).days)]
        miss_data = []
        value = df.TCLOSE[df.index[0]]
        for dt in all_dt:
            if dt in df.index:
                value = df.TCLOSE[dt]
            else:
                miss_data.append([dt, value])
        miss_df = pd.DataFrame(miss_data, columns=['DT', 'TCLOSE'])
        miss_df.set_index(['DT'], inplace=True)
        miss_df = miss_df.iloc[miss_df.index.argsort()]

        new_df = pd.concat([df, miss_df], axis=0)
        new_df = new_df.iloc[new_df.index.argsort()]
        new_df['timestamp'] = pd.to_datetime(new_df.index)
        new_df.set_index(['timestamp'], inplace=True)
        new_df = new_df.iloc[new_df.index.argsort()]
        train_data = new_df

        # build the training dataset for deepar
        data = common.ListDataset([{
            'start': train_data.index[0],
            'target': train_data.TCLOSE[:]
        }],
                                  freq='1d')

        # now training the model
        if len(mxnet.test_utils.list_gpus()):
            estimator = deepar.DeepAREstimator(freq='1d',
                                               prediction_length=predict_days,
                                               trainer=Trainer(ctx='gpu',
                                                               epochs=100))
        else:
            estimator = deepar.DeepAREstimator(freq='1d',
                                               prediction_length=predict_days,
                                               trainer=Trainer(epochs=100))
        predictor = estimator.train(training_data=data)

        # predict the future data
        predict = predictor.predict(data, 1)
        predict_list = list(predict)
        max, min, max_id, min_id = predict_list[0].samples.max(
        ), predict_list[0].samples.min(), predict_list[0].samples.argmax(
        ), predict_list[0].samples.argmin()
        predict_x = [(predict_list[0].start_date +
                      timedelta(days=i)).__format__('%Y-%m-%d')
                     for i in range(0, predict_days + 1)]
        predict_y = predict_list[0].samples[0]
        predict_df = pd.DataFrame(zip(pd.to_datetime(predict_x), predict_y),
                                  columns=['DT', 'TCLOSE'])
        predict_df['timestamp'] = predict_df['DT']
        predict_df.set_index('timestamp', inplace=True)
        train_df = train_data.loc[train_data.index[-5:]]
        train_df['DT'] = pd.to_datetime(train_df.index)
        output_df = pd.concat([train_df, predict_df], axis=0)
        if min_id < max_id and (max - min) / min >= 0.099:
            output_df.to_csv(
                os.path.join(predict_path, 'red_{code}.csv'.format(code=code)))
        else:
            output_df.to_csv(
                os.path.join(predict_path,
                             'green_{code}.csv'.format(code=code)))
        return True
コード例 #13
0
data = common.ListDataset([{
    "start": df.index[0],
    "target": df.marketClose[:"2020-06-08 15:59:00"]
}],
                          freq="1min")

lots_of_data = common.ListDataset([{
    "start": new_data.index[0],
    "target": new_data.Close[:-1]
}],
                                  freq="1min")

trainer = Trainer(epochs=10, ctx="cpu", num_batches_per_epoch=75)
estimator = deepar.DeepAREstimator(freq="1min",
                                   prediction_length=390,
                                   trainer=trainer,
                                   num_layers=2)
#predictor = estimator.train(training_data=data)

trial_estimator = SimpleFeedForwardEstimator(num_hidden_dimensions=[10],
                                             prediction_length=390,
                                             context_length=780,
                                             freq="1min",
                                             trainer=Trainer(
                                                 ctx="cpu",
                                                 epochs=5,
                                                 learning_rate=1e-30,
                                                 hybridize=False,
                                                 num_batches_per_epoch=100))
predictor = estimator.train(lots_of_data)
コード例 #14
0
ファイル: create_dataset.py プロジェクト: syyunn/gluonts
# model
# estimator = SimpleFeedForwardEstimator(
#     num_hidden_dimensions=[100],
#     prediction_length=prediction_length,
#     context_length=T-prediction_length,
#     freq=freq,
#     trainer=Trainer(ctx="cpu", epochs=1000, learning_rate=1e-4, num_batches_per_epoch=1),
# )
from gluonts.model import deepar

estimator = deepar.DeepAREstimator(freq=freq,
                                   num_layers=4,
                                   num_cells=1,
                                   prediction_length=prediction_length,
                                   trainer=Trainer(ctx="cpu",
                                                   epochs=500,
                                                   learning_rate=1e-4,
                                                   num_batches_per_epoch=35,
                                                   minimum_learning_rate=0))

predictor = estimator.train(training_data=train_ds)

from gluonts.evaluation.backtest import make_evaluation_predictions

forecast_it, ts_it = make_evaluation_predictions(
    dataset=test_ds,  # test dataset
    predictor=predictor,  # predictor
    num_samples=1000,  # number of sample paths we want for evaluation
)  # return vals are generators