コード例 #1
0
def test_hierarchical_cnn_encoders(use_residual, hybridize) -> None:
    num_ts = 2
    ts_len = 10
    num_static_feat = 2
    num_dynamic_feat = 5

    test_data = nd.arange(num_ts * ts_len).reshape(shape=(num_ts, ts_len, 1))
    test_static_feat = nd.random.randn(num_ts, num_static_feat)
    test_dynamic_feat = nd.random.randn(num_ts, ts_len, num_dynamic_feat)

    chl_dim = [30, 30, 30]
    ks_seq = [3] * len(chl_dim)
    dial_seq = [1, 3, 9]

    cnn = HierarchicalCausalConv1DEncoder(
        dial_seq,
        ks_seq,
        chl_dim,
        use_residual,
        use_dynamic_feat=True,
        use_static_feat=True,
    )
    cnn.collect_params().initialize()

    if hybridize:
        cnn.hybridize()

    true_shape = (num_ts, ts_len, 31) if use_residual else (num_ts, ts_len, 30)

    assert (cnn(test_data, test_static_feat,
                test_dynamic_feat)[1].shape == true_shape)
コード例 #2
0
    def __init__(
        self,
        freq: str,
        prediction_length: int,
        cardinality: List[int],
        embedding_dimension: int,
        decoder_mlp_layer: List[int],
        decoder_mlp_static_dim: int,
        scaler: Scaler = NOPScaler(),
        context_length: Optional[int] = None,
        quantiles: Optional[List[float]] = None,
        trainer: Trainer = Trainer(),
        num_parallel_samples: int = 100,
    ) -> None:
        encoder = HierarchicalCausalConv1DEncoder(
            dilation_seq=[1, 3, 9],
            kernel_size_seq=([3] * len([30, 30, 30])),
            channels_seq=[30, 30, 30],
            use_residual=True,
            use_dynamic_feat=True,
            use_static_feat=True,
        )

        super(CNN2QRForecaster, self).__init__(
            freq=freq,
            prediction_length=prediction_length,
            encoder=encoder,
            cardinality=cardinality,
            embedding_dimension=embedding_dimension,
            decoder_mlp_layer=decoder_mlp_layer,
            decoder_mlp_static_dim=decoder_mlp_static_dim,
            context_length=context_length,
            scaler=scaler,
            quantiles=quantiles,
            trainer=trainer,
            num_parallel_samples=num_parallel_samples,
        )
コード例 #3
0
    def __init__(
        self,
        freq: str,
        prediction_length: int,
        context_length: Optional[int] = None,
        use_past_feat_dynamic_real: bool = False,
        use_feat_dynamic_real: bool = False,
        use_feat_static_cat: bool = False,
        cardinality: List[int] = None,
        embedding_dimension: List[int] = None,
        add_time_feature: bool = True,
        add_age_feature: bool = False,
        enable_encoder_dynamic_feature: bool = True,
        enable_decoder_dynamic_feature: bool = True,
        seed: Optional[int] = None,
        decoder_mlp_dim_seq: Optional[List[int]] = None,
        channels_seq: Optional[List[int]] = None,
        dilation_seq: Optional[List[int]] = None,
        kernel_size_seq: Optional[List[int]] = None,
        use_residual: bool = True,
        quantiles: Optional[List[float]] = None,
        distr_output: Optional[DistributionOutput] = None,
        trainer: Trainer = Trainer(),
        scaling: Optional[bool] = None,
        scaling_decoder_dynamic_feature: bool = False,
        num_forking: Optional[int] = None,
        max_ts_len: Optional[int] = None,
        is_iqf: bool = True,
        batch_size: int = 32,
    ) -> None:

        assert (distr_output is None) or (quantiles is None)
        assert (
            prediction_length > 0
        ), f"Invalid prediction length: {prediction_length}."
        assert decoder_mlp_dim_seq is None or all(
            d > 0 for d in decoder_mlp_dim_seq
        ), "Elements of `mlp_hidden_dimension_seq` should be > 0"
        assert channels_seq is None or all(
            d > 0 for d in channels_seq
        ), "Elements of `channels_seq` should be > 0"
        assert dilation_seq is None or all(
            d > 0 for d in dilation_seq
        ), "Elements of `dilation_seq` should be > 0"
        # TODO: add support for kernel size=1
        assert kernel_size_seq is None or all(
            d > 1 for d in kernel_size_seq
        ), "Elements of `kernel_size_seq` should be > 0"
        assert quantiles is None or all(
            0 <= d <= 1 for d in quantiles
        ), "Elements of `quantiles` should be >= 0 and <= 1"

        self.decoder_mlp_dim_seq = (
            decoder_mlp_dim_seq if decoder_mlp_dim_seq is not None else [30]
        )
        self.channels_seq = (
            channels_seq if channels_seq is not None else [30, 30, 30]
        )
        self.dilation_seq = (
            dilation_seq if dilation_seq is not None else [1, 3, 9]
        )
        self.kernel_size_seq = (
            kernel_size_seq if kernel_size_seq is not None else [7, 3, 3]
        )
        self.quantiles = (
            quantiles
            if (quantiles is not None) or (distr_output is not None)
            else [0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975]
        )
        self.is_iqf = is_iqf

        assert (
            len(self.channels_seq)
            == len(self.dilation_seq)
            == len(self.kernel_size_seq)
        ), (
            f"mismatch CNN configurations: {len(self.channels_seq)} vs. "
            f"{len(self.dilation_seq)} vs. {len(self.kernel_size_seq)}"
        )

        if seed:
            np.random.seed(seed)
            mx.random.seed(seed, trainer.ctx)

        # `use_static_feat` and `use_dynamic_feat` always True because network
        # always receives input; either from the input data or constants
        encoder = HierarchicalCausalConv1DEncoder(
            dilation_seq=self.dilation_seq,
            kernel_size_seq=self.kernel_size_seq,
            channels_seq=self.channels_seq,
            use_residual=use_residual,
            use_static_feat=True,
            use_dynamic_feat=True,
            prefix="encoder_",
        )

        decoder = ForkingMLPDecoder(
            dec_len=prediction_length,
            final_dim=self.decoder_mlp_dim_seq[-1],
            hidden_dimension_sequence=self.decoder_mlp_dim_seq[:-1],
            prefix="decoder_",
        )

        quantile_output = (
            QuantileOutput(self.quantiles, is_iqf=self.is_iqf)
            if self.quantiles
            else None
        )

        super().__init__(
            encoder=encoder,
            decoder=decoder,
            quantile_output=quantile_output,
            distr_output=distr_output,
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            use_past_feat_dynamic_real=use_past_feat_dynamic_real,
            use_feat_dynamic_real=use_feat_dynamic_real,
            use_feat_static_cat=use_feat_static_cat,
            enable_encoder_dynamic_feature=enable_encoder_dynamic_feature,
            enable_decoder_dynamic_feature=enable_decoder_dynamic_feature,
            cardinality=cardinality,
            embedding_dimension=embedding_dimension,
            add_time_feature=add_time_feature,
            add_age_feature=add_age_feature,
            trainer=trainer,
            scaling=scaling,
            scaling_decoder_dynamic_feature=scaling_decoder_dynamic_feature,
            num_forking=num_forking,
            max_ts_len=max_ts_len,
            batch_size=batch_size,
        )