コード例 #1
0
def test_multivariate_gaussian(hybridize: bool) -> None:
    num_samples = 2000
    dim = 2

    mu = np.arange(0, dim) / float(dim)

    L_diag = np.ones((dim, ))
    L_low = 0.1 * np.ones((dim, dim)) * np.tri(dim, k=-1)
    L = np.diag(L_diag) + L_low
    Sigma = L.dot(L.transpose())

    distr = MultivariateGaussian(mu=mx.nd.array(mu), L=mx.nd.array(L))

    samples = distr.sample(num_samples)

    mu_hat, L_hat = maximum_likelihood_estimate_sgd(
        MultivariateGaussianOutput(dim=dim),
        samples,
        init_biases=
        None,  # todo we would need to rework biases a bit to use it in the multivariate case
        hybridize=hybridize,
        learning_rate=PositiveFloat(0.01),
        num_epochs=PositiveInt(10),
    )

    distr = MultivariateGaussian(mu=mx.nd.array([mu_hat]),
                                 L=mx.nd.array([L_hat]))

    Sigma_hat = distr.variance[0].asnumpy()

    assert np.allclose(
        mu_hat, mu, atol=0.1,
        rtol=0.1), f"mu did not match: mu = {mu}, mu_hat = {mu_hat}"
    assert np.allclose(
        Sigma_hat, Sigma, atol=0.1, rtol=0.1
    ), f"Sigma did not match: sigma = {Sigma}, sigma_hat = {Sigma_hat}"
コード例 #2
0
ファイル: test_mixture.py プロジェクト: szhengac/gluon-ts
        < 0.05
    )

    # can only calculated cdf for gaussians currently
    if isinstance(distr1, Gaussian) and isinstance(distr2, Gaussian):
        emp_cdf, edges = empirical_cdf(samples_mix.asnumpy())
        calc_cdf = mixture.cdf(mx.nd.array(edges)).asnumpy()
        assert np.allclose(calc_cdf[1:, :], emp_cdf, atol=1e-2)


@pytest.mark.parametrize(
    "distribution_outputs",
    [
        ((GaussianOutput(), GaussianOutput()),),
        ((GaussianOutput(), StudentTOutput(), LaplaceOutput()),),
        ((MultivariateGaussianOutput(3), MultivariateGaussianOutput(3)),),
    ],
)
@pytest.mark.parametrize("serialize_fn", serialize_fn_list)
def test_mixture_output(distribution_outputs, serialize_fn) -> None:
    mdo = MixtureDistributionOutput(*distribution_outputs)

    args_proj = mdo.get_args_proj()
    args_proj.initialize()

    input = mx.nd.ones(shape=(512, 30))

    distr_args = args_proj(input)
    d = mdo.distribution(distr_args)
    d = serialize_fn(d)
コード例 #3
0
            LowrankMultivariateGaussianOutput(dim=target_dim, rank=2),
            10,
            estimator,
            False,
            False,
        ),
        (
            LowrankMultivariateGaussianOutput(dim=target_dim, rank=2),
            10,
            estimator,
            True,
            False,
        ),
        (None, 10, estimator, True, True),
        (
            MultivariateGaussianOutput(dim=target_dim),
            10,
            estimator,
            False,
            True,
        ),
        (
            MultivariateGaussianOutput(dim=target_dim),
            10,
            estimator,
            True,
            True,
        ),
    ],
)
def test_deepvar(
コード例 #4
0
     mx.nd.random.gamma(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     BetaOutput(),
     mx.nd.random.gamma(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     MultivariateGaussianOutput(dim=5),
     mx.nd.random.normal(shape=(3, 4, 10)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4),
     (5, ),
 ),
 (
     LowrankMultivariateGaussianOutput(dim=5, rank=4),
     mx.nd.random.normal(shape=(3, 4, 10)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4),
     (5, ),
 ),
 (
コード例 #5
0
    [
        BetaOutput(),
        CategoricalOutput(num_cats=3),
        DeterministicOutput(value=42.0),
        DirichletMultinomialOutput(dim=3, n_trials=5),
        DirichletOutput(dim=4),
        EmpiricalDistributionOutput(num_samples=10,
                                    distr_output=GaussianOutput()),
        GammaOutput(),
        GaussianOutput(),
        GenParetoOutput(),
        LaplaceOutput(),
        LogitNormalOutput(),
        LoglogisticOutput(),
        LowrankMultivariateGaussianOutput(dim=5, rank=2),
        MultivariateGaussianOutput(dim=4),
        NegativeBinomialOutput(),
        OneInflatedBetaOutput(),
        PiecewiseLinearOutput(num_pieces=10),
        PoissonOutput(),
        StudentTOutput(),
        UniformOutput(),
        WeibullOutput(),
        ZeroAndOneInflatedBetaOutput(),
        ZeroInflatedBetaOutput(),
        ZeroInflatedNegativeBinomialOutput(),
        ZeroInflatedPoissonOutput(),
    ],
)
def test_distribution_output_serde(distr_output: DistributionOutput):
    distr_output_copy = decode(encode(distr_output))