コード例 #1
0
    def create_predictor(
        self,
        transformation: transform.Transformation,
        trained_network: Seq2SeqTrainingNetwork,
    ) -> Predictor:
        # todo: this is specific to quantile output
        quantile_strs = [
            Quantile.from_float(quantile).name for quantile in self.quantiles
        ]

        prediction_network = Seq2SeqPredictionNetwork(
            embedder=trained_network.embedder,
            scaler=trained_network.scaler,
            encoder=trained_network.encoder,
            enc2dec=trained_network.enc2dec,
            decoder=trained_network.decoder,
            quantile_output=trained_network.quantile_output,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            forecast_generator=QuantileForecastGenerator(quantile_strs),
        )
コード例 #2
0
    def create_predictor(
        self, transformation: Transformation, trained_network: HybridBlock
    ) -> Predictor:

        prediction_network = TransformerPredictionNetwork(
            encoder=self.encoder,
            decoder=self.decoder,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            distr_output=self.distr_output,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            lags_seq=self.lags_seq,
            scaling=True,
            num_parallel_samples=self.num_parallel_samples,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #3
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = GPVARPredictionNetwork(
            target_dim=self.target_dim,
            target_dim_sample=self.target_dim,
            num_parallel_samples=self.num_parallel_samples,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            dropout_rate=self.dropout_rate,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
            distr_output=self.distr_output,
            conditioning_length=self.conditioning_length,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            output_transform=self.output_transform,
        )
コード例 #4
0
ファイル: _estimator.py プロジェクト: rothn/gluon-ts
 def create_predictor(
         self, transformation: Transformation,
         trained_network: HybridBlock) -> RepresentableBlockPredictor:
     prediction_network = SelfAttentionPredictionNetwork(
         context_length=self.context_length,
         prediction_length=self.prediction_length,
         d_hidden=self.model_dim,
         m_ffn=self.ffn_dim_multiplier,
         n_head=self.num_heads,
         n_layers=self.num_layers,
         n_output=self.num_outputs,
         cardinalities=self.cardinalities,
         kernel_sizes=self.kernel_sizes,
         dist_enc=self.distance_encoding,
         pre_ln=self.pre_layer_norm,
         dropout=self.dropout,
         temperature=self.temperature,
     )
     copy_parameters(trained_network, prediction_network)
     return RepresentableBlockPredictor(
         input_transform=transformation,
         prediction_net=prediction_network,
         batch_size=self.trainer.batch_size,
         freq=self.freq,
         prediction_length=self.prediction_length,
         ctx=self.trainer.ctx,
         forecast_generator=QuantileForecastGenerator(
             quantiles=[str(q) for q in prediction_network.quantiles], ),
     )
コード例 #5
0
ファイル: _estimator.py プロジェクト: lixixibj/gluon-ts
    def create_predictor(
        self,
        transformation: transform.Transformation,
        trained_network: mx.gluon.HybridBlock,
        bin_values: np.ndarray,
    ) -> Predictor:

        prediction_network = WaveNetSampler(
            num_samples=self.num_parallel_samples,
            temperature=self.temperature,
            **self._get_wavenet_args(bin_values),
        )

        # The lookup layer is specific to the sampling network here
        # we make sure it is initialized.
        prediction_network.initialize()

        copy_parameters(
            net_source=trained_network,
            net_dest=prediction_network,
            allow_missing=True,
        )

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #6
0
ファイル: _estimator.py プロジェクト: cchen125/gluon-ts
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = LSTNetPredict(
            num_series=self.num_series,
            channels=self.channels,
            kernel_size=self.kernel_size,
            rnn_cell_type=self.rnn_cell_type,
            rnn_num_layers=self.rnn_num_layers,
            skip_rnn_cell_type=self.skip_rnn_cell_type,
            skip_rnn_num_layers=self.skip_rnn_num_layers,
            skip_size=self.skip_size,
            ar_window=self.ar_window,
            context_length=self.context_length,
            lead_time=self.lead_time,
            prediction_length=self.prediction_length,
            dropout_rate=self.dropout_rate,
            output_activation=self.output_activation,
            scaling=self.scaling,
            dtype=self.dtype,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            lead_time=self.lead_time,
            ctx=self.trainer.ctx,
            dtype=self.dtype,
        )
コード例 #7
0
    def create_predictor(
        self, transformation: Transformation, trained_network: HybridBlock
    ) -> Predictor:
        prediction_network = DeepStatePredictionNetwork(
            num_sample_paths=self.num_sample_paths,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            past_length=self.past_length,
            prediction_length=self.prediction_length,
            issm=self.issm,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            scaling=self.scaling,
            params=trained_network.collect_params(),
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #8
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: ForkingSeq2SeqTrainingNetwork,
    ) -> Predictor:
        # todo: this is specific to quantile output
        quantile_strs = [
            parse_quantile_input(q)[1] for q in self.quantile_output.quantiles
        ]

        prediction_network = ForkingSeq2SeqPredictionNetwork(
            encoder=trained_network.encoder,
            enc2dec=trained_network.enc2dec,
            decoder=trained_network.decoder,
            quantile_output=trained_network.quantile_output,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            forecast_cls_name=QuantileForecast.__name__,
            forecast_kwargs=dict(forecast_keys=quantile_strs),
        )
コード例 #9
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = DeepARPredictionNetwork(
            num_parallel_samples=self.num_parallel_samples,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            distr_output=self.distr_output,
            dropoutcell_type=self.dropoutcell_type,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
            dtype=self.dtype,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            dtype=self.dtype,
        )
コード例 #10
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = GaussianProcessPredictionNetwork(
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            cardinality=self.cardinality,
            num_samples=self.num_eval_samples,
            params=trained_network.collect_params(),
            kernel_output=self.kernel_output,
            params_scaling=self.params_scaling,
            ctx=self.trainer.ctx,
            float_type=self.float_type,
            max_iter_jitter=self.max_iter_jitter,
            jitter_method=self.jitter_method,
            sample_noise=self.sample_noise,
        )

        copy_parameters(net_source=trained_network,
                        net_dest=prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            float_type=self.float_type,
        )
コード例 #11
0
    def create_predictor(
        self,
        transformation: transform.Transformation,
        trained_network: mx.gluon.HybridBlock,
        bin_values: np.ndarray,
    ) -> Predictor:

        prediction_network = WaveNetSampler(
            num_samples=self.num_eval_samples,
            temperature=self.temperature,
            **self._get_wavenet_args(bin_values),
        )

        # copy_parameters(net_source=trained_network, net_dest=prediction_network, ignore_extra=True)
        copy_parameters(net_source=trained_network,
                        net_dest=prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #12
0
ファイル: _estimator.py プロジェクト: rothn/gluon-ts
 def create_predictor(
         self, transformation: Transformation,
         trained_network: HybridBlock) -> RepresentableBlockPredictor:
     prediction_network = TemporalFusionTransformerPredictionNetwork(
         context_length=self.context_length,
         prediction_length=self.prediction_length,
         d_var=self.variable_dim,
         d_hidden=self.hidden_dim,
         n_head=self.num_heads,
         n_output=self.num_outputs,
         d_past_feat_dynamic_real=list(
             self.past_dynamic_feature_dims.values()),
         c_past_feat_dynamic_cat=list(
             self.past_dynamic_cardinalities.values()),
         d_feat_dynamic_real=[1] * len(self.time_features) +
         list(self.dynamic_feature_dims.values()),
         c_feat_dynamic_cat=list(self.dynamic_cardinalities.values()),
         d_feat_static_real=list(self.static_feature_dims.values()),
         c_feat_static_cat=list(self.static_cardinalities.values()),
         dropout=self.dropout_rate,
     )
     copy_parameters(trained_network, prediction_network)
     return RepresentableBlockPredictor(
         input_transform=transformation,
         prediction_net=prediction_network,
         batch_size=self.trainer.batch_size,
         freq=self.freq,
         prediction_length=self.prediction_length,
         ctx=self.trainer.ctx,
         forecast_generator=QuantileForecastGenerator(
             quantiles=[str(q) for q in prediction_network.quantiles], ),
     )
コード例 #13
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: ForkingSeq2SeqNetworkBase,
    ) -> Predictor:
        # this is specific to quantile output
        quantile_strs = [
            Quantile.from_float(quantile).name
            for quantile in self.quantile_output.quantiles
        ]

        prediction_network = ForkingSeq2SeqPredictionNetwork(
            encoder=trained_network.encoder,
            enc2dec=trained_network.enc2dec,
            decoder=trained_network.decoder,
            quantile_output=trained_network.quantile_output,
            context_length=self.context_length,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            scaling=self.scaling,
            dtype=self.dtype,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            forecast_generator=QuantileForecastGenerator(quantile_strs),
        )
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = MyPredNetwork1(
            prediction_length=self.prediction_length, num_cells=self.num_cells)

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx)
コード例 #15
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: ForkingSeq2SeqNetworkBase,
    ) -> Predictor:
        quantile_strs = (
            [
                Quantile.from_float(quantile).name
                for quantile in self.quantile_output.quantiles
            ]
            if self.quantile_output is not None
            else None
        )

        prediction_network_class = (
            ForkingSeq2SeqPredictionNetwork
            if self.quantile_output is not None
            else ForkingSeq2SeqDistributionPredictionNetwork
        )

        prediction_network = prediction_network_class(
            encoder=trained_network.encoder,
            enc2dec=trained_network.enc2dec,
            decoder=trained_network.decoder,
            quantile_output=trained_network.quantile_output,
            distr_output=trained_network.distr_output,
            context_length=self.context_length,
            num_forking=self.num_forking,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            scaling=self.scaling,
            dtype=self.dtype,
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            forecast_generator=(
                QuantileForecastGenerator(quantile_strs)
                if quantile_strs is not None
                else DistributionForecastGenerator(self.distr_output)
            ),
        )
コード例 #16
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = CustomSimpleFeedForwardPredNetwork(
            prediction_length=self.prediction_length,
            distr_output=self.distr_output,
            distr_output_type=self.distr_output_type,
            num_cells=self.num_cells,
            num_sample_paths=self.num_sample_paths,
            alpha=self.alpha)

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #17
0
        def create_predictor(
            self,
            transformation: Transformation,
            trained_network: gluon.HybridBlock,
        ) -> Predictor:
            prediction_network = MyPredNetwork(
                prediction_length=self.prediction_length,
                cells=self.cells,
                act_type=self.act_type,
            )

            copy_parameters(trained_network, prediction_network)

            return RepresentableBlockPredictor(
                input_transform=transformation,
                prediction_net=prediction_network,
                batch_size=self.trainer.batch_size,
                freq=self.freq,
                prediction_length=self.prediction_length,
                ctx=self.trainer.ctx,
            )