def test_chain(): chain = transform.Chain(trans=[ transform.AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=10, ), transform.AddAgeFeature( target_field=FieldName.TARGET, output_field="age", pred_length=10, log_scale=True, ), transform.AddObservedValuesIndicator(target_field=FieldName.TARGET, output_field="observed_values"), ]) assert equals(chain, clone(chain)) assert not equals(chain, clone(chain, {"trans": []})) another_chain = transform.Chain(trans=[ transform.AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=10, ), transform.AddAgeFeature( target_field=FieldName.TARGET, output_field="age", pred_length=10, log_scale=False, ), transform.AddObservedValuesIndicator(target_field=FieldName.TARGET, output_field="observed_values"), ]) assert not equals(chain, another_chain)
def test_Transformation(): train_length = 100 ds = gluonts.dataset.common.ListDataset( [{"start": "2012-01-01", "target": [0.2] * train_length}], freq="1D" ) pred_length = 10 t = transform.Chain( trans=[ transform.AddTimeFeatures( start_field=transform.FieldName.START, target_field=transform.FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=pred_length, ), transform.AddAgeFeature( target_field=transform.FieldName.TARGET, output_field="age", pred_length=pred_length, log_scale=True, ), transform.AddObservedValuesIndicator( target_field=transform.FieldName.TARGET, output_field="observed_values", ), transform.VstackFeatures( output_field="dynamic_feat", input_fields=["age", "time_feat"], drop_inputs=True, ), transform.InstanceSplitter( target_field=transform.FieldName.TARGET, is_pad_field=transform.FieldName.IS_PAD, start_field=transform.FieldName.START, forecast_start_field=transform.FieldName.FORECAST_START, train_sampler=transform.ExpectedNumInstanceSampler( num_instances=4 ), past_length=train_length, future_length=pred_length, time_series_fields=["dynamic_feat", "observed_values"], ), ] ) assert_serializable(t) for u in t(iter(ds), is_train=True): print(u)
def test_AddObservedIndicator(): """ Tests the different methods to impute missing values. """ array_value = np.array( [np.nan, 1.0, 1.0, np.nan, 2.0, np.nan, 1.0, np.nan]) l_methods = [ "dummy_value", "mean", "causal_mean", "last_value", "rolling_mean1", "rolling_mean10", ] d_method_instances = { "dummy_value": DummyValueImputation(), "mean": MeanValueImputation(), "causal_mean": CausalMeanValueImputation(), "last_value": LastValueImputation(), "rolling_mean1": RollingMeanValueImputation(1), "rolling_mean10": RollingMeanValueImputation(10), } d_expected_result = { "dummy_value": np.array([0.0, 1.0, 1.0, 0.0, 2.0, 0.0, 1.0, 0.0]), "mean": np.array([1.25, 1.0, 1.0, 1.25, 2.0, 1.25, 1.0, 1.25]), "causal_mean": np.array([1.0, 1.0, 1.0, 1.0, 2.0, 1.2, 1.0, 9 / 7]), "last_value": np.array([1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0]), "rolling_mean10": np.array([1.0, 1.0, 1.0, 1.0, 2.0, 1.1, 1.0, 1.2]), "rolling_mean1": np.array([1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0]), } expected_missindicator = np.array([0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]) for method in l_methods: transfo = transform.AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field=FieldName.OBSERVED_VALUES, imputation_method=d_method_instances[method], ) d = {"target": array_value.copy()} res = transfo.transform(d) assert np.array_equal(d_expected_result[method], res["target"]) assert np.array_equal(expected_missindicator, res[FieldName.OBSERVED_VALUES])
def test_multi_dim_transformation(is_train): train_length = 10 first_dim = np.arange(1, 11, 1).tolist() first_dim[-1] = "NaN" second_dim = np.arange(11, 21, 1).tolist() second_dim[0] = "NaN" ds = gluonts.dataset.common.ListDataset( data_iter=[{"start": "2012-01-01", "target": [first_dim, second_dim]}], freq="1D", one_dim_target=False, ) pred_length = 2 # Looks weird - but this is necessary to assert the nan entries correctly. first_dim[-1] = np.nan second_dim[0] = np.nan t = transform.Chain( trans=[ transform.AddTimeFeatures( start_field=transform.FieldName.START, target_field=transform.FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=pred_length, ), transform.AddAgeFeature( target_field=transform.FieldName.TARGET, output_field="age", pred_length=pred_length, log_scale=True, ), transform.AddObservedValuesIndicator( target_field=transform.FieldName.TARGET, output_field="observed_values", convert_nans=False, ), transform.VstackFeatures( output_field="dynamic_feat", input_fields=["age", "time_feat"], drop_inputs=True, ), transform.InstanceSplitter( target_field=transform.FieldName.TARGET, is_pad_field=transform.FieldName.IS_PAD, start_field=transform.FieldName.START, forecast_start_field=transform.FieldName.FORECAST_START, train_sampler=transform.ExpectedNumInstanceSampler( num_instances=4 ), past_length=train_length, future_length=pred_length, time_series_fields=["dynamic_feat", "observed_values"], output_NTC=False, ), ] ) assert_serializable(t) if is_train: for u in t(iter(ds), is_train=True): assert_shape(u["past_target"], (2, 10)) assert_shape(u["past_dynamic_feat"], (4, 10)) assert_shape(u["past_observed_values"], (2, 10)) assert_shape(u["future_target"], (2, 2)) assert_padded_array( u["past_observed_values"], np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]), u["past_is_pad"], ) assert_padded_array( u["past_target"], np.array([first_dim, second_dim]), u["past_is_pad"], ) else: for u in t(iter(ds), is_train=False): assert_shape(u["past_target"], (2, 10)) assert_shape(u["past_dynamic_feat"], (4, 10)) assert_shape(u["past_observed_values"], (2, 10)) assert_shape(u["future_target"], (2, 0)) assert_padded_array( u["past_observed_values"], np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]), u["past_is_pad"], ) assert_padded_array( u["past_target"], np.array([first_dim, second_dim]), u["past_is_pad"], )