コード例 #1
0
ファイル: neumf.py プロジェクト: HyunLee103/Music_RecSys
    def load_pretrain_weights(self):
        """Loading weights from trained MLP model & GMF model"""
        config = self.config
        config['latent_dim'] = config['latent_dim_mlp']
        mlp_model = MLP(config)
        if config['use_cuda'] is True:
            mlp_model.cuda()
        resume_checkpoint(mlp_model,
                          model_dir=config['pretrain_mlp'],
                          device_id=config['device_id'])

        self.embedding_user_mlp.weight.data = mlp_model.embedding_user.weight.data
        self.embedding_item_mlp.weight.data = mlp_model.embedding_item.weight.data
        for idx in range(len(self.fc_layers)):
            self.fc_layers[idx].weight.data = mlp_model.fc_layers[
                idx].weight.data

        config['latent_dim'] = config['latent_dim_mf']
        gmf_model = GMF(config)
        if config['use_cuda'] is True:
            gmf_model.cuda()
        resume_checkpoint(gmf_model,
                          model_dir=config['pretrain_mf'],
                          device_id=config['device_id'])
        self.embedding_user_mf.weight.data = gmf_model.embedding_user.weight.data
        self.embedding_item_mf.weight.data = gmf_model.embedding_item.weight.data

        self.affine_output.weight.data = 0.5 * torch.cat([
            mlp_model.affine_output.weight.data,
            gmf_model.affine_output.weight.data
        ],
                                                         dim=-1)
        self.affine_output.bias.data = 0.5 * (
            mlp_model.affine_output.bias.data +
            gmf_model.affine_output.bias.data)
コード例 #2
0
    def load_pretrain_weights(self):
        """Loading weights from trained MLP model & GMF model"""
        config = self.config
        mlp_model = MLP(config)
        device_id = -1
        if config['use_cuda'] is True:
            mlp_model.cuda()
            device_id = config['device_id']
        resume_checkpoint(mlp_model,
                          model_dir=config['pretrain_mlp'],
                          device_id=device_id)

        self.embedding_account_mlp.weight.data = mlp_model.embedding_account.weight.data
        self.embedding_location_mlp.weight.data = mlp_model.embedding_location.weight.data

        for idx in range(len(self.fc_layers)):
            self.fc_layers[idx].weight.data = mlp_model.fc_layers[
                idx].weight.data

        config['latent_dim'] = config['latent_dim_mf']
        gmf_model = GMF(config)
        if config['use_cuda'] is True:
            gmf_model.cuda()
        resume_checkpoint(gmf_model,
                          model_dir=config['pretrain_mf'],
                          device_id=device_id)
        self.embedding_account_mf.weight.data = gmf_model.embedding_account.weight.data
        self.embedding_location_mf.weight.data = gmf_model.embedding_location.weight.data

        self.embedding_account_mlp.require = False
        self.embedding_location_mlp.require = False
        self.embedding_account_mf.require = False
        self.embedding_location_mf.require = False
コード例 #3
0
 def load_pretrain_weights(self):
     """Loading weights from trained GMF model"""
     config = self.config
     gmf_model = GMF(config)
     if config['use_cuda'] is True:
         gmf_model.cuda()
     resume_checkpoint(gmf_model, model_dir=config['pretrain_mf'], device_id=config['device_id'])
     self.embedding_user.weight.data = gmf_model.embedding_user.weight.data
     self.embedding_item.weight.data = gmf_model.embedding_item.weight.data
コード例 #4
0
ファイル: mlp.py プロジェクト: rupimanoj/Friends2Vec
    def load_pretrain_weights(self):
        """Loading weights from trained GMF model"""
        config = self.config
        gmf_model = GMF(config)
        if config['use_cuda'] is True:
            gmf_model.cuda()
        resume_checkpoint(gmf_model, model_dir=config['pretrain_mf'], device_id=config['device_id'])
        self.embedding_user.weight.data = gmf_model.embedding_user.weight.data
        self.embedding_item.weight.data = gmf_model.embedding_item.weight.data


# class MLPEngine(Engine):
#     """Engine for training & evaluating GMF model"""
#     def __init__(self, config):
#         self.model = MLP(config)
#         if config['use_cuda'] is True:
#             use_cuda(True, config['device_id'])
#             self.model.cuda()
#         super(MLPEngine, self).__init__(config)
#         print(self.model)

#         if config['pretrain']:
#             self.model.load_pretrain_weights()