コード例 #1
0
def test(file, max_n_components, n_classes):
    print('GaussianMixture for set: ' + file)

    dataset = utils.dataset_reader(file)

    X, y = utils.data_process(dataset)

    list_sse = []
    list_nmi = []
    for n_components in range(1, max_n_components + 1):
        gmm = GaussianMixture(n_components=n_components)
        gmm.fit(X)

        y_hat = gmm.predict(X)
        sse = utils.sum_of_squared_errors(X, y_hat, gmm.means_)
        nmi = utils.normalized_mutual_information(y, n_classes, y_hat,
                                                  n_components)

        print('{0:2d} components, SSE: {1:.2f}, NMI: {2:.4f}'.format(
            n_components, sse, nmi))
        #        print('iterations: ', gmm.n_iter_)
        #        print(gmm.means_, gmm.covariances_, gmm.weights_)
        #        print(gmm.lower_bound_)
        list_sse.append(sse)
        list_nmi.append(nmi)

    utils.plot_measure_vs_k('SSE', list_sse, range(1, max_n_components + 1))
    utils.plot_measure_vs_k('NMI', list_nmi, range(1, max_n_components + 1))
コード例 #2
0
    def testPredictClasses(self):
        """
        Assert that torch.FloatTensor is handled correctly.
        """
        x = torch.randn(4, 2)
        n_components = np.random.randint(1, 100)

        model = GaussianMixture(n_components, x.size(1))
        model.fit(x)
        y = model.predict(x)

        # check that dimensionality of class memberships is (n)
        self.assertEqual(torch.Tensor(x.size(0)).size(), y.size())
コード例 #3
0
    def testPredictProbabilities(self):
        """
        Assert that torch.FloatTensor is handled correctly when returning class probabilities.
        """
        x = torch.randn(4, 2)
        n_components = np.random.randint(1, 100)

        model = GaussianMixture(n_components, x.size(1))
        model.fit(x)

        # check that y_p has dimensions (n, k)
        y_p = model.predict(x, probs=True)
        self.assertEqual(
            torch.Tensor(x.size(0), n_components).size(), y_p.size())
コード例 #4
0
ファイル: example.py プロジェクト: ldeecke/gmm-torch
def main():
    n, d = 300, 2

    # generate some data points ..
    data = torch.Tensor(n, d).normal_()
    # .. and shift them around to non-standard Gaussians
    data[:n//2] -= 1
    data[:n//2] *= sqrt(3)
    data[n//2:] += 1
    data[n//2:] *= sqrt(2)

    # Next, the Gaussian mixture is instantiated and ..
    n_components = 2
    model = GaussianMixture(n_components, d)
    model.fit(data)
    # .. used to predict the data points as they where shifted
    y = model.predict(data)

    plot(data, y)
コード例 #5
0
    # init_dataset_size = int(train_dataset.shape[0] * 0.005)
    # init_dataset = train_dataset[np.random.choice(train_dataset.shape[0], init_dataset_size, replace=False)]
    init_dataset = train_dataset

    model = GaussianMixture(X=init_dataset,
                            n_components=args.components,
                            random_state=seed,
                            init_params=args.init)

    init_metrics = {
        'aic': model.aic(train_dataset),
        'bic': model.bic(train_dataset),
        'll': model.score(train_dataset)
    }

    model.fit(train_dataset, args.epochs, train_dataset_labels, args,
              output_dir)

    predicted_labels = model.predict_proba(train_dataset).tolist()
    predicted_labels = np.array(predicted_labels)

    print('\nSaving images...')

    metrics = model.history_['metrics']

    for key in metrics:
        metrics[key].insert(0, init_metrics[key])

    plot_metric(metrics['ll'], args.epochs, output_dir, 'Epochs',
                'Log-Likelihood')
    plot_metric(metrics['aic'], args.epochs, output_dir, 'Epochs', 'AIC')
    plot_metric(metrics['bic'], args.epochs, output_dir, 'Epochs', 'BIC')