コード例 #1
0
ファイル: gmntools.py プロジェクト: hofmannmartin/gmn
	def __initrealoperatorbasis(self):
		self.operatorbasis = []
		for i in arange(self.__dimH):
			tmp = zeros(self.__dim, dtype=numpy.complex128)
			tmp[i,i] = 1.
			self.operatorbasis += [hoperator(tmp,self.__dimsubs)]
		for x in arange(self.__dimH):
			for y in arange(x+1,self.__dimH):
				tmp = zeros(self.__dim, dtype=numpy.complex128)
				tmp[x,y] = tmp[y,x] = 1.
				self.operatorbasis += [hoperator(tmp,self.__dimsubs)]
コード例 #2
0
ファイル: gmntools.py プロジェクト: hofmannmartin/gmn
	def setoperatorbasis(self,opbasis=[]):
		"""
		Set an custom operator basis
		If this basis does not span the full operator space the resulting witnesses lie within the subspace only

		opbasis : list of array_like
			A list of array_like objects representing a basis in the space of operators/observables.

		Try to find the optimal witness within the operator subspace spanned by pauli operators X,Y,Z and qubit identity matrices (1): 111, XXZ, XZX, ZXX, ZZZ
		>>> from gmntools import gmn, pauli
		>>> qb_3 = pauli([2,2,2])
		>>> basis = [qb_3.operator(i) for i in ['eee','xxz','xzx','zxx','zzz']]
		>>> ghz = [[.5,0,0,0,0,0,0,.5],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[.5,0,0,0,0,0,0,.5]]
		>>> gmntool = gmn([2,2,2],ghz)

		By default a complete basis is used
		>>> gmntool.gmn()
		0.499999998369068

		There is no witness within the subspace detecting the GHZ state
		>>> gmntool.setoperatorbasis(basis)
		>>> gmntool.gmn()
		-3.646152630556347e-08

		To reset to the full standard basis call the function without argument
		>>> gmntool.setoperatorbasis()
		>>> gmntool.gmn()
		0.499999998369068
		"""
		self.operatorbasis = [hoperator(o,self.__dimsubs) for o in opbasis]
コード例 #3
0
ファイル: gmntools.py プロジェクト: hofmannmartin/gmn
	def __W(self,sol):
		nop = len(self.operatorbasis)
		self.W = {}
		W =  numpy.sum([sol['x'][index]*op.matrix for index,op in enumerate(self.operatorbasis)],axis=0)
		self.W['W'] = W
		for i in range(1,2**(self.__nsys -1)):
			temp = map(int,numpy.binary_repr(i,self.__nsys))
			subsys = []
			for index,j in enumerate(temp):
				if j ==1:
					subsys.append(index)
			m = (str(subsys)+'|'+str([l for l in range(1,self.__nsys+1) if l not in subsys])).replace('[','').replace(']','').replace(' ','')
			Pm = numpy.sum([sol['x'][i*nop+k]*op.matrix for k,op in enumerate(self.operatorbasis)],axis=0)
			self.W['P_'+m] = Pm
			self.W['Q_'+m] = hoperator(W-Pm,self.__dimsubs).ptranspose(subsys)
		return 0
コード例 #4
0
ファイル: gmntools.py プロジェクト: hofmannmartin/gmn
	def gmn_partial_info_ppt(self,meas,real=False,altsolver=None):
		"""
		Lower bound the genuine multiparticle negativity as given in Ref. [*] based
		on incomplete tomographic data without the need of state reconstruction.
		Here, however, fully PPT witnesses are used compared to fully decomposable 
		witnesses in the gmn_partial_info memberfunction. Hence, fewer states are 
		detected and in general more measurements are needed.
		[*] M. Hofmann, T. Moroder, and O. Guhne, J. Phys. A: Math. Theor. 47 155301 (2014).
		
		meas : list of tuples
			A list of tuples. The first entry of the tuple is an array_like object representing the 
			measurement operator. The second entry represents the measured value.
		real : Boolean
			Set to true if the densitymatrix has real eigenvalues only to speed up computation.
			Use the memberfuction setrealbasis() or manually set a real operator basis to optimize the gain.
		altsolver : None or 'dsdp'
			If you have the solver DSDP5.8 installed on your system use it for optimal performance

		As example consider the W state
		>>> w = [[0,0,0,0,0,0,0,0],[0,1./3.,1./3.,0,1./3.,0,0,0],[0,1./3.,1./3.,0,1./3.,0,0,0],[0,0,0,0,0,0,0,0],[0,1./3.,1./3.,0,1./3.,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0]]
		
		As in the memberfunction gmn_partial_info measure the W state in just four directions given by tensor products of Pauli operators XXZ, XZX, ZXX, ZZZ
		>>> from gmntools import gmn, pauli
		>>> from numpy import trace, dot
		>>> pauliop = pauli(3)
		>>> measurements = [pauliop.operator(i) for i in ['xxz','xzx','zxx','zzz']
]
		>>> meas_w = [(o,trace(dot(w,o)).real) for o in measurements]

		Initialize gmn class
		>>> gmntool = gmn([2,2,2])

		No fully PPT witness can be constructed from the given measurements, which can detect the W state
		>>> gmntool.setrealbasis()
		>>> gmntool.gmn_partial_info(meas_w)
		-4.6050924423687366e-10
		"""
		measurements = list(meas)
		if type(measurements) is not list:
			if [m for m in measurements if (type(m) is not tuple and type(m) is not list) or len(m)!=2 or type(m[1]) not in [int,complex,float,long]]:
				raise TypeError("'mesurements' must be a list of tuples containing the measured operator and its expectation value '(operator,expectation_value)'")
		measurements += [(eye(self.__dimH,dtype=numpy.complex128),1.)]
		#setting up SDP
		##setting up problem vector
		nmes= len(measurements)
		mesop = [hoperator(m[0],self.__dimsubs) for m in measurements]
		c = zeros(nmes, dtype=numpy.float64)
		for index,o in enumerate(measurements):
			c[index] = o[1]
		##setting up semidefinite constraints
		F0 = []
		F = []
		##setting up constraint W^(T_m) >= 0
		for i in range(1,2**(self.__nsys -1)):
			temp = map(int,numpy.binary_repr(i,self.__nsys))
			subsys = []
			for index,j in enumerate(temp):
				if j ==1:
					subsys.append(index)
			F0 += [zeros(self.__dim)]
			F += [[o.ptranspose(subsys) for o in mesop]]
		##setting up constraint W^(T_m) <= 1
		for i in range(1,2**(self.__nsys -1)):
			temp = map(int,numpy.binary_repr(i,self.__nsys))
			subsys = []
			for index,j in enumerate(temp):
				if j ==1:
					subsys.append(index)
			F0 += [eye(self.__dimH)]
			F += [[-o.ptranspose(subsys) for o in mesop]]
		sol = self.__solve(c,F0,F,real,altsolver)
		self.status = sol['status']
		return -sol['primal objective']