コード例 #1
0
def test_spectrum():
    freq = np.logspace(-2, 2, 101)
    moment = spectrum.moment_from_magnitude(6.7)
    mod = spectrum.model((moment, 150), freq, 10, kappa=0.035)
    np.testing.assert_allclose(mod[0], 0.21764373, atol=1e-5)
    np.testing.assert_allclose(mod[50], 113.5025146, atol=1e-5)
    np.testing.assert_allclose(mod[-1], 0.0032295, atol=1e-5)
コード例 #2
0
def summary_plots(st, directory, origin):
    """Stream summary plot.

    Args:
        st (gmprocess.stationtrace.StationStream):
            Stream of data.
        directory (str):
            Directory for saving plots.
        origin (ScalarEvent):
            Flattened subclass of Obspy Event.
    """
    mpl.rcParams['font.size'] = 8

    # Check if directory exists, and if not, create it.
    if not os.path.exists(directory):
        os.makedirs(directory)

    # Setup figure for stream
    nrows = 4
    ntrace = min(len(st), 3)
    fig = plt.figure(figsize=(3.9 * ntrace, 10))
    gs = fig.add_gridspec(nrows, ntrace, height_ratios=[1, 1, 2, 2])
    ax = [plt.subplot(g) for g in gs]

    stream_id = st.get_id()
    logging.debug('stream_id: %s' % stream_id)
    logging.debug('passed: %s' % st.passed)
    if st.passed:
        plt.suptitle("M%s %s | %s (passed)" %
                     (origin.magnitude, origin.id, stream_id),
                     x=0.5,
                     y=1.02)
    else:
        plt.suptitle("M%s %s | %s (failed)" %
                     (origin.magnitude, origin.id, stream_id),
                     color='red',
                     x=0.5,
                     y=1.02)

    # Compute velocity
    st_vel = st.copy()
    st_vel = st_vel.integrate()

    # process channels in preferred sort order (i.e., HN1, HN2, HNZ)
    channels = [tr.stats.channel for tr in st]
    if len(channels) < 3:
        channelidx = np.argsort(channels).tolist()
    else:
        channelidx = range(3)

    for j in channelidx:
        tr = st[channelidx.index(j)]

        # Break if j>3 becasue we can't on a page.
        if j > 2:
            logging.warning('Only plotting first 3 traces in stream.')
            break

        # ---------------------------------------------------------------------
        # Get trace info
        if tr.hasCached('snr'):
            snr_dict = tr.getCached('snr')
        else:
            snr_dict = None

        if tr.hasCached('signal_spectrum'):
            signal_dict = tr.getCached('signal_spectrum')
        else:
            signal_dict = None

        if tr.hasCached('noise_spectrum'):
            noise_dict = tr.getCached('noise_spectrum')
        else:
            noise_dict = None

        if tr.hasCached('smooth_signal_spectrum'):
            smooth_signal_dict = tr.getCached('smooth_signal_spectrum')
        else:
            smooth_signal_dict = None

        if tr.hasCached('smooth_noise_spectrum'):
            smooth_noise_dict = tr.getCached('smooth_noise_spectrum')
        else:
            smooth_noise_dict = None

        if tr.hasParameter('snr_conf'):
            snr_conf = tr.getParameter('snr_conf')
        else:
            snr_conf = None

        trace_failed = tr.hasParameter('failure')
        if trace_failed:
            failure_reason = tr.getParameter('failure')['reason']
        else:
            failure_reason = ''

        # Note that the theoretical spectra will only be available for
        # horizontal channels
        if tr.hasParameter('fit_spectra'):
            fit_spectra_dict = tr.getParameter('fit_spectra')
        else:
            fit_spectra_dict = None

        # ---------------------------------------------------------------------
        # Compute model spectra
        if fit_spectra_dict is not None:
            model_spec = spectrum.model(
                (fit_spectra_dict['moment'], fit_spectra_dict['stress_drop']),
                freq=np.array(smooth_signal_dict['freq']),
                dist=fit_spectra_dict['epi_dist'],
                kappa=fit_spectra_dict['kappa'])

        # ---------------------------------------------------------------------
        # Acceleration time series plot
        if trace_failed:
            trace_status = " (failed)"
            trace_title = tr.get_id() + trace_status
            ax[j].set_title(trace_title, color="red")
        else:
            trace_status = " (passed)"
        trace_title = tr.get_id() + trace_status
        ax[j].set_title(trace_title)
        dtimes = np.linspace(0, tr.stats.endtime - tr.stats.starttime,
                             tr.stats.npts)
        ax[j].plot(dtimes, tr.data, 'k', linewidth=0.5)

        # Show signal split as vertical dashed line
        if tr.hasParameter('signal_split'):
            split_dict = tr.getParameter('signal_split')
            sptime = UTCDateTime(split_dict['split_time'])
            dsec = sptime - tr.stats.starttime
            ax[j].axvline(dsec, color='red', linestyle='dashed')

        ax[j].set_xlabel('Time (s)')
        ax[j].set_ylabel('Acceleration (cm/s/s)')

        # ---------------------------------------------------------------------
        # Velocity time series plot
        tr_vel = st_vel[j]
        dtimes = np.linspace(0, tr_vel.stats.endtime - tr_vel.stats.starttime,
                             tr_vel.stats.npts)
        ax[j + ntrace].plot(dtimes, tr_vel.data, 'k', linewidth=0.5)

        # Show signal split as vertical dashed line
        if tr.hasParameter('signal_split'):
            split_dict = tr.getParameter('signal_split')
            sptime = UTCDateTime(split_dict['split_time'])
            dsec = sptime - tr.stats.starttime
            ax[j + ntrace].axvline(dsec, color='red', linestyle='dashed')

        ax[j + ntrace].set_xlabel('Time (s)')
        ax[j + ntrace].set_ylabel('Velocity (cm/s)')

        # ---------------------------------------------------------------------
        # Spectral plot

        # Raw signal spec
        if signal_dict is not None:
            ax[j + 2 * ntrace].loglog(signal_dict['freq'],
                                      signal_dict['spec'],
                                      color='lightblue')

        # Smoothed signal spec
        if smooth_signal_dict is not None:
            ax[j + 2 * ntrace].loglog(smooth_signal_dict['freq'],
                                      smooth_signal_dict['spec'],
                                      color='blue',
                                      label='Signal')

        # Raw noise spec
        if noise_dict is not None:
            ax[j + 2 * ntrace].loglog(noise_dict['freq'],
                                      noise_dict['spec'],
                                      color='salmon')

        # Smoothed noise spec
        if smooth_noise_dict is not None:
            ax[j + 2 * ntrace].loglog(smooth_noise_dict['freq'],
                                      smooth_noise_dict['spec'],
                                      color='red',
                                      label='Noise')

        if fit_spectra_dict is not None:
            # Model spec
            ax[j + 2 * ntrace].loglog(smooth_signal_dict['freq'],
                                      model_spec,
                                      color='black',
                                      linestyle='dashed')

            # Corner frequency
            ax[j + 2 * ntrace].axvline(fit_spectra_dict['f0'],
                                       color='black',
                                       linestyle='dashed')

        ax[j + 2 * ntrace].set_xlabel('Frequency (Hz)')
        ax[j + 2 * ntrace].set_ylabel('Amplitude (cm/s)')

        # ---------------------------------------------------------------------
        # Signal-to-noise ratio plot

        if 'corner_frequencies' in tr.getParameterKeys():
            hp = tr.getParameter('corner_frequencies')['highpass']
            lp = tr.getParameter('corner_frequencies')['lowpass']
            ax[j + 3 * ntrace].axvline(hp,
                                       color='black',
                                       linestyle='--',
                                       label='Highpass')
            ax[j + 3 * ntrace].axvline(lp,
                                       color='black',
                                       linestyle='--',
                                       label='Lowpass')

        if snr_conf is not None:
            ax[j + 3 * ntrace].axhline(snr_conf['threshold'],
                                       color='0.75',
                                       linestyle='-',
                                       linewidth=2)
            ax[j + 3 * ntrace].axvline(snr_conf['max_freq'],
                                       color='0.75',
                                       linewidth=2,
                                       linestyle='-')
            ax[j + 3 * ntrace].axvline(snr_conf['min_freq'],
                                       color='0.75',
                                       linewidth=2,
                                       linestyle='-')

        if snr_dict is not None:
            ax[j + 3 * ntrace].loglog(snr_dict['freq'],
                                      snr_dict['snr'],
                                      label='SNR')

        ax[j + 3 * ntrace].set_ylabel('SNR')
        ax[j + 3 * ntrace].set_xlabel('Frequency (Hz)')

    stream_id = st.get_id()

    # Do not save files if running tests
    file_name = None
    if 'CALLED_FROM_PYTEST' not in os.environ:
        plt.subplots_adjust(left=0.05,
                            right=0.97,
                            hspace=0.25,
                            wspace=0.2,
                            top=0.97)
        file_name = os.path.join(directory,
                                 origin.id + '_' + stream_id + '.png')
        plt.savefig(fname=file_name)
        plt.close('all')

    return file_name
コード例 #3
0
def summary_plots(st, directory, origin):
    """Stream summary plot.

    Args:
        st (gmprocess.stationtrace.StationStream):
            Stream of data.
        directory (str):
            Directory for saving plots.
        origin (ScalarEvent):
            Flattened subclass of Obspy Event.
    """
    mpl.rcParams['font.size'] = 8

    # Check if directory exists, and if not, create it.
    if not os.path.exists(directory):
        os.makedirs(directory)

    # Setup figure for stream
    nrows = 4
    ntrace = min(len(st), 3)
    fig = plt.figure(figsize=(3.8 * ntrace, 10))
    gs = fig.add_gridspec(nrows, ntrace, height_ratios=[1, 1, 2, 2])
    ax = [plt.subplot(g) for g in gs]

    stream_id = st.get_id()
    logging.debug('stream_id: %s' % stream_id)
    logging.debug('passed: %s' % st.passed)
    if st.passed:
        plt.suptitle("M%s %s | %s (passed)" %
                     (origin.magnitude, origin.id, stream_id),
                     x=0.5, y=1.02)
    else:
        plt.suptitle("M%s %s | %s (failed)"
                     % (origin.magnitude, origin.id, stream_id),
                     color='red', x=0.5, y=1.02)

    # Compute velocity
    st_vel = st.copy()
    st_vel = st_vel.integrate()

    # process channels in preferred sort order (i.e., HN1, HN2, HNZ)
    channels = [tr.stats.channel for tr in st]
    if len(channels) < 3:
        channelidx = np.argsort(channels).tolist()
    else:
        channelidx = range(3)

    for j in channelidx:
        tr = st[channelidx.index(j)]

        # Break if j>3 becasue we can't on a page.
        if j > 2:
            logging.warning('Only plotting first 3 traces in stream.')
            break

        # ---------------------------------------------------------------------
        # Get trace info
        if tr.hasParameter('snr'):
            snr_dict = tr.getParameter('snr')
        else:
            snr_dict = None

        if tr.hasParameter('signal_spectrum'):
            signal_dict = tr.getParameter('signal_spectrum')
        else:
            signal_dict = None

        if tr.hasParameter('noise_spectrum'):
            noise_dict = tr.getParameter('noise_spectrum')
        else:
            noise_dict = None

        if tr.hasParameter('smooth_signal_spectrum'):
            smooth_signal_dict = tr.getParameter('smooth_signal_spectrum')
        else:
            smooth_signal_dict = None

        if tr.hasParameter('smooth_noise_spectrum'):
            smooth_noise_dict = tr.getParameter('smooth_noise_spectrum')
        else:
            smooth_noise_dict = None

        if tr.hasParameter('snr_conf'):
            snr_conf = tr.getParameter('snr_conf')
        else:
            snr_conf = None

        trace_failed = tr.hasParameter('failure')
        if trace_failed:
            failure_reason = tr.getParameter('failure')['reason']
        else:
            failure_reason = ''

        # Note that the theoretical spectra will only be available for
        # horizontal channels
        if tr.hasParameter('fit_spectra'):
            fit_spectra_dict = tr.getParameter('fit_spectra')
        else:
            fit_spectra_dict = None

        # ---------------------------------------------------------------------
        # Compute model spectra
        if fit_spectra_dict is not None:
            model_spec = spectrum.model(
                freq=np.array(smooth_signal_dict['freq']),
                dist=fit_spectra_dict['epi_dist'],
                kappa=fit_spectra_dict['kappa'],
                magnitude=fit_spectra_dict['magnitude'],
                stress_drop=fit_spectra_dict['stress_drop']
            )

        # ---------------------------------------------------------------------
        # Acceleration time series plot
        if trace_failed:
            trace_status = " (failed)"
            trace_title = tr.get_id() + trace_status
            ax[j].set_title(trace_title, color="red")
        else:
            trace_status = " (passed)"
        trace_title = tr.get_id() + trace_status
        ax[j].set_title(trace_title)
        dtimes = tr.times('utcdatetime') - tr.times('utcdatetime')[0]
        ax[j].plot(dtimes, tr.data, 'k', linewidth=0.5)

        # Show signal split as vertical dashed line
        if tr.hasParameter('signal_split'):
            split_dict = tr.getParameter('signal_split')
            dsec = split_dict['split_time'] - tr.times('utcdatetime')[0]
            ax[j].axvline(dsec,
                          color='red', linestyle='dashed')

        ax[j].set_xlabel('Time (s)')
        ax[j].set_ylabel('Acceleration (cm/s/s)')

        # ---------------------------------------------------------------------
        # Velocity time series plot
        tr_vel = st_vel[j]
        dtimes = tr_vel.times('utcdatetime') - tr_vel.times('utcdatetime')[0]
        ax[j + ntrace].plot(dtimes, tr_vel.data, 'k', linewidth=0.5)

        # Show signal split as vertical dashed line
        if tr.hasParameter('signal_split'):
            split_dict = tr.getParameter('signal_split')
            dsec = split_dict['split_time'] - tr.times('utcdatetime')[0]
            ax[j + ntrace].axvline(dsec, color='red', linestyle='dashed')

        ax[j + ntrace].set_xlabel('Time (s)')
        ax[j + ntrace].set_ylabel('Velocity (cm/s)')

        # ---------------------------------------------------------------------
        # Spectral plot

        # Raw signal spec
        if signal_dict is not None:
            ax[j + 2 * ntrace].loglog(signal_dict['freq'],
                                      signal_dict['spec'],
                                      color='lightblue')

        # Smoothed signal spec
        if smooth_signal_dict is not None:
            ax[j + 2 * ntrace].loglog(smooth_signal_dict['freq'],
                                      smooth_signal_dict['spec'],
                                      color='blue',
                                      label='Signal')

        # Raw noise spec
        if noise_dict is not None:
            ax[j + 2 * ntrace].loglog(noise_dict['freq'],
                                      noise_dict['spec'],
                                      color='salmon')

        # Smoothed noise spec
        if smooth_noise_dict is not None:
            ax[j + 2 * ntrace].loglog(smooth_noise_dict['freq'],
                                      smooth_noise_dict['spec'],
                                      color='red',
                                      label='Noise')

        if fit_spectra_dict is not None:
            # Model spec
            ax[j + 2 * ntrace].loglog(smooth_signal_dict['freq'],
                                      model_spec,
                                      color='black',
                                      linestyle='dashed')

            # Corner frequency
            ax[j + 2 * ntrace].axvline(fit_spectra_dict['f0'],
                                       color='black',
                                       linestyle='dashed')

        ax[j + 2 * ntrace].set_xlabel('Frequency (Hz)')
        ax[j + 2 * ntrace].set_ylabel('Amplitude (cm/s)')

        # ---------------------------------------------------------------------
        # Signal-to-noise ratio plot

        if 'corner_frequencies' in tr.getParameterKeys():
            hp = tr.getParameter('corner_frequencies')['highpass']
            lp = tr.getParameter('corner_frequencies')['lowpass']
            ax[j + 3 * ntrace].axvline(hp,
                                       color='black',
                                       linestyle='--',
                                       label='Highpass')
            ax[j + 3 * ntrace].axvline(lp,
                                       color='black',
                                       linestyle='--',
                                       label='Lowpass')

        if snr_conf is not None:
            ax[j + 3 * ntrace].axhline(snr_conf['threshold'],
                                       color='0.75',
                                       linestyle='-',
                                       linewidth=2)
            ax[j + 3 * ntrace].axvline(snr_conf['max_freq'],
                                       color='0.75',
                                       linewidth=2,
                                       linestyle='-')
            ax[j + 3 * ntrace].axvline(snr_conf['min_freq'],
                                       color='0.75',
                                       linewidth=2,
                                       linestyle='-')

        if snr_dict is not None:
            ax[j + 3 * ntrace].loglog(snr_dict['freq'],
                                      snr_dict['snr'],
                                      label='SNR')

        ax[j + 3 * ntrace].set_ylabel('SNR')
        ax[j + 3 * ntrace].set_xlabel('Frequency (Hz)')

    stream_id = st.get_id()

    # Do not save files if running tests
    if 'CALLED_FROM_PYTEST' not in os.environ:
        plt.subplots_adjust(hspace=0.35, wspace=0.35, top=0.97)
        file_name = os.path.join(
            directory,
            origin.id + '_' + stream_id + '.png')
        plt.savefig(fname=file_name, bbox_inches='tight')
        plt.close('all')

    return st
コード例 #4
0
def test_spectrum():
    freq = np.logspace(-2, 2, 101)
    mod = spectrum.model(freq, 10, kappa=0.035, magnitude=6.7)
    np.testing.assert_allclose(mod[0], 0.21764373, atol=1e-5)
    np.testing.assert_allclose(mod[50], 113.5025146, atol=1e-5)
    np.testing.assert_allclose(mod[-1], 0.0032295, atol=1e-5)