def grafica_track(satelite, debris): gmt = GMT(config={'BASEMAP_TYPE': 'fancy'}) gmt.pscoast( R='0/280/-75/75', #g J='M6i', #'G70/-51/5i' B='30g30', # grid N='1', S=(173, 216, 230), # wet fill color G=(144, 238, 144), # dry fill color W='thinnest') # shoreline pen gmt.psxy( satelite, #'../Encuentro/archivos/15482U', R='', J='', O='-', S='t0.05', K='K', G='red') gmt.psxy( debris, #'../Encuentro/archivos/27386U', R='', J='', O='', S='t0.05', K='K', G='blue') gmt.save('../visual/archivos/ploteo_track.ps') print 'Grafico Terminado'
def gmt_map(event_lats=None, event_lons=None, station_lats=None, station_lons=None, **kwargs): with_stations = False if kwargs.get('stations', False): with_stations = True with_events = False if kwargs.get('events', False): with_events = True gmt = GMT(config={'BASEMAP_TYPE': 'fancy'}) lat_min = min(station_lats + event_lats) lat_max = max(station_lats + event_lats) lon_min = min(station_lons + event_lons) lon_max = max(station_lons + event_lons) lat_offset = (lat_max - lat_min) * 0.3 lon_offset = (lon_max - lon_min) * 0.3 gmt.pscoast(R='%i/%i/%i/%i' % (lon_min - lon_offset, lon_max + lon_offset, lat_min - lat_offset, lat_max + lat_offset), J='M10c', B='4g4', D='f', S=(114, 159, 207), G=(233, 185, 110), W='thinnest') if station_lats and station_lons and with_stations: gmt.psxy('-St0.5c', R=True, J=True, G=(0, 255, 123), in_columns=[station_lons, station_lats]) if event_lats and event_lons and with_events: gmt.psxy('-Sa0.2c', R=True, J=True, G=(255, 0, 0), in_columns=[event_lons, event_lats]) gmt.save('mapplot.pdf')
from gmtpy import GMT gmt = GMT(config={'BASEMAP_TYPE': 'fancy'}) gmt.pscoast( R='5/15/52/58', # region J='B10/55/55/60/10c', # projection B='4g4', # grid D='f', # resolution S=(114, 159, 207), # wet fill color G=(233, 185, 110), # dry fill color W='thinnest') # shoreline pen gmt.save('example1.pdf') gmt.save('example1.eps')
from gmtpy import GMT, cm, GridLayout, FrameLayout, golden_ratio import numpy as np # some data to plot... x = np.linspace(0, 5, 101) ys = (np.sin(x) + 2.5, np.cos(x) + 2.5) gmt = GMT(config={'PAGE_COLOR': '247/247/240'}) layout = GridLayout(1, 2) widgets = [] for iwidget in range(2): inner_layout = FrameLayout() layout.set_widget(0, iwidget, inner_layout) widget = inner_layout.get_widget('center') widget.set_horizontal(7 * cm) widget.set_vertical(7 * cm / golden_ratio) widgets.append(widget) #gmt.draw_layout( layout ) #print layout for widget, y in zip(widgets, ys): gmt.psbasemap(R=(0, 5, 0, 5), B='%g:Time [ s ]:/%g:Amplitude [ m ]:SWne' % (1, 1), *widget.XYJ()) gmt.psxy(R=True, W='2p,blue,o', in_columns=(x, y), *widget.XYJ()) gmt.save('example4.pdf', bbox=layout.bbox())
def gmt_north_america(**kwargs): ''' Give rf_data as ([values],[time]) ''' from gmtpy import GMT #get kwargs fname = kwargs.get('fname','USA_map.pdf') station_data = kwargs.get('station_data','none') quake_locs = kwargs.get('quake_locs','none') rf_data = kwargs.get('rf_data','none') header = kwargs.get('header','none') #topo data etopo='/geo/home/romaguir/utils/ETOPO5.grd' topo_grad='/geo/home/romaguir/utils/topo_grad.grd' #colormap colombia='/geo/home/romaguir/utils/colors/colombia' region = '-128/-66/24/52' scale = 'l-100/35/33/45/1:30000000' #initialize gmt gmt = GMT(config={'BASEMAP_TYPE':'fancy', 'HEADER_FONT_SIZE':'14'}) #'COLOR_BACKGROUND':'-', :setting this to '-' plots z are transparent #'COLOR_FOREGROUND':'-'}) #make colormap cptfile = gmt.tempfilename() gmt.makecpt(C=colombia,T='-4000/4950/100',Z=True,out_filename=cptfile,D='i') #make gradient #topo_grad = gmt.tempfilename() #gmt.grdgradient(etopo,V=True,A='100',N='e0.8',M=True,G=topo_grad,K=False) #plot topography gmt.grdimage( etopo, R = region, J = scale, C = cptfile, E = '200') #I = '0.5')#topo_grad) #plot coastlines gmt.pscoast( R=region, J=scale, B='a10', D='l', A='500', W='thinnest,black,-', N='all') #plot stations if station_data != 'none': gmt.psxy( R=region, J=scale, B='a10', S='t0.1', G='red', in_rows = station_data ) if quake_locs != 'none': eq_region = 'g' eq_scale = 'E-100/40/2.25i' gmt.pscoast( R = eq_region, J = eq_scale, B = 'p', A = '10000', G = 'lightgrey', W = 'thinnest', Y = '3.5i', X = '-0.5i' ) gmt.psxy( R = eq_region, J = eq_scale, S = 'a0.05', G = 'blue', in_rows = quake_locs ) #plot receiver function stack if rf_data != 'none': rf_region = '-0.20/0.20/0/100' rf_scale = 'X1i/-5i' gmt.psxy( R = rf_region, J = rf_scale, #G = 'grey', #fill B = '0.25::/10:time (s):NE', W = 'thin', X = '9i', Y = '-3.5i', in_columns = rf_data ) #plot shaded area for positive values vals = rf_data[0] time = rf_data[1] poly_vals_pos = [] poly_time_pos = [] for i in range(0,len(vals)): val_here = max(0,np.float(vals[i])) poly_time_pos.append(time[i]) poly_vals_pos.append(val_here) poly_vals_pos.append(0.0) poly_time_pos.append(time[::-1][0]) poly_vals_pos.append(0.0) poly_time_pos.append(time[0]) gmt.psxy( R = rf_region, J = rf_scale, G = 'red', B = '0.25::/10:time (s):NE', W = 'thin', in_columns = (poly_vals_pos,poly_time_pos) ) #plot shaded area for negative values ''' vals = rf_data[0] time = rf_data[1] poly_vals_neg = [] poly_time_neg = [] for i in range(0,len(vals)): val_here = min(0,np.float(vals[i])) poly_time_neg.append(time[i]) poly_vals_neg.append(val_here) poly_vals_neg.append(0.0) poly_time_neg.append(time[::-1][0]) poly_vals_neg.append(0.0) poly_time_neg.append(time[0]) gmt.psxy( R = rf_region, J = rf_scale, G = 'blue', B = '0.25::/10:time (s):NE', W = 'thin', in_columns = (poly_vals_neg,poly_time_neg) ) ''' #header_file = open('header_file','w') #header_file.write('<< EOF') #header_file.close() #write header information if header != 'none': stations_text = header['N_traces'] + ' traces in stack' events_text = header['N_events'] + ' events' freq_text = header['frequency'] decon_text = 'deconvolution method : ' + header['decon'] gmt.pstext( in_rows = [(-96,60,12,0,1,'MC',stations_text)], R = region, J = scale, N = True, X = '-8.5i' ) gmt.pstext( in_rows = [(-96,59,12,0,1,'MC',events_text)], R = region, J = scale, N = True ) gmt.pstext( in_rows = [(-96,58,12,0,1,'MC',freq_text)], R = region, J = scale, N = True ) gmt.pstext( in_rows = [(-96,57,12,0,1,'MC',decon_text)], R = region, J = scale, N = True ) #save figure gmt.save(fname)
def plot_vtk_slice(vtk_slice, theta_range=[0, 360], depth_range=[0, 2885], **kwargs): #-------------------------------------------------------------------------------- ''' This will plot a cross section of a .vtk file. Open the .vtk file in paraview, choose a slice, and select 'File -> export data'. This will save the data as a .csv file, which can be plotted with this function. args-------------------------------------------------------------------------- vtk_slice: the .csv file theta_range: the range in degrees you wish to plot. dtype=tuple default=[0,360] (whole earth) depth_range: the range in depth you wish to plot. dtype=tuple default=[0,2885] (whole mantle) kwargs------------------------------------------------------------------------ cmap = colormap to use dtype=string default='BlueWhiiteOrangeRed' data_range = max and min values to use in colorbar. dtype=tuple default=[-1.0,1.0] csteps = number of divisions in colorbar dtype=int default=100 cmap_direction = forward or reverse colormap dtype=string default='i' fname = filename dtype=string default='slice.pdf' rotation = number of degrees to rotate figure dtype=float default=90.0 (i.e., rotate from lat coor to colat based coor) contour = True or False ''' #get kwargs------------------------------------------------------------------- cmap_dir = '/geo/home/romaguir/utils/colors/' cmap = kwargs.get('cmap', 'BlueWhiteOrangeRed') cmap = cmap_dir + cmap data_range = kwargs.get('data_range', [-0.25, 0.25]) csteps = kwargs.get('csteps', 100) cmap_direction = kwargs.get('cmap_direction', 'i') fname = kwargs.get('fname', 'slice.pdf') rotation = kwargs.get('rotation', 90.0) contour = kwargs.get('contour', True) #read csv slice (output of paraview)------------------------------------------ f = pandas.read_csv(vtk_slice) p1 = f['Points:0'] p2 = f['Points:1'] p3 = f['Points:2'] dvp = f['dVp()'] #transform to polar, earth coordinates---------------------------------------- r, t = cart2polar(p1, p3) r *= 6371.0 t = np.degrees(t) print min(dvp), max(dvp) #setup GMT plot--------------------------------------------------------------- gmt = GMT(config={'BASEMAP_TYPE': 'fancy', 'HEADER_FONT_SIZE': '14'}) region = '{}/{}/{}/{}'.format(theta_range[0], theta_range[1], 6371.0 - depth_range[1], 6371.0 - depth_range[0]) surf_region = '{}/{}/{}/{}'.format(theta_range[0] - 2, theta_range[1] + 2, 6371.0 - depth_range[1], 6500.0 - depth_range[0]) scale = 'P6i' #Polar, 8 inch radius cptfile = gmt.tempfilename() grdfile = gmt.tempfilename() #gmt.makecpt(C=cmap,T='{}/{}/{}'.format(data_range[0],data_range[1],csteps),Z=False,out_filename=cptfile,D=cmap_direction) gmt.makecpt(C=cmap, T='-0.25/0.25/0.025', A=100, out_filename=cptfile, D=True) gmt.surface(in_columns=[t + rotation, r, dvp], G=grdfile, I='0.5/25', T=0.0, R=surf_region, out_discard=True) ''' #plot the data---------------------------------------------------------------- gmt.psxy( R=region, J=scale, #B='a15f15:"":/200f200:""::."":WSne', B='a300f300', S='s0.20', #G='blue', C=cptfile, in_columns=[t+rotation,r,dvp] ) ''' #plot the data---------------------------------------------------------------- gmt.grdimage(grdfile, R=region, J=scale, B='a300f300', C=cptfile, E='i5') #contour the data------------------------------------------------------------- if contour == True: gmt.grdcontour(grdfile, R=region, J=scale, C=cptfile, W='1') #plot 660--------------------------------------------------------------------- d660 = np.loadtxt('/geo/home/romaguir/utils/660_polar.dat') print d660 gmt.psxy(R=region, J=scale, W='1', in_rows=[d660]) gmt.save(fname)