コード例 #1
0
def gen_syn3(nb_shapes=80, width_basis=300, feature_generator=None, m=5):
    """ Synthetic Graph #3:

    Start with Barabasi-Albert graph and attach grid-shaped subgraphs.

    Args:
        nb_shapes         :  The number of shapes (here 'grid') that should be added to the base graph.
        width_basis       :  The width of the basis graph (here 'Barabasi-Albert' random graph).
        feature_generator :  A `FeatureGenerator` for node features. If `None`, add constant features to nodes.
        m                 :  number of edges to attach to existing node (for BA graph)

    Returns:
        G                 :  A networkx graph
        role_id           :  Role ID for each node in synthetic graph.
        name              :  A graph identifier
    """
    basis_type = "ba"
    list_shapes = [["grid", 3]] * nb_shapes

    plt.figure(figsize=(8, 6), dpi=300)

    G, role_id, _ = synthetic_structsim.build_graph(width_basis,
                                                    basis_type,
                                                    list_shapes,
                                                    start=0,
                                                    m=5)
    G = perturb([G], 0.01)[0]

    if feature_generator is None:
        feature_generator = featgen.ConstFeatureGen(1)
    feature_generator.gen_node_features(G)

    name = basis_type + "_" + str(width_basis) + "_" + str(nb_shapes)
    return G, role_id, name
コード例 #2
0
def pkl_task(args, feat=None):
    with open(os.path.join(args.datadir, args.pkl_fname), "rb") as pkl_file:
        data = pickle.load(pkl_file)
    graphs = data[0]
    labels = data[1]
    test_graphs = data[2]
    test_labels = data[3]

    for i in range(len(graphs)):
        graphs[i].graph["label"] = labels[i]
    for i in range(len(test_graphs)):
        test_graphs[i].graph["label"] = test_labels[i]

    if feat is None:
        featgen_const = featgen.ConstFeatureGen(
            np.ones(args.input_dim, dtype=float))
        for G in graphs:
            featgen_const.gen_node_features(G)
        for G in test_graphs:
            featgen_const.gen_node_features(G)

    train_dataset, test_dataset, max_num_nodes = prepare_data(
        graphs, args, test_graphs=test_graphs)
    model = models.GcnEncoderGraph(
        args.input_dim,
        args.hidden_dim,
        args.output_dim,
        args.num_classes,
        args.num_gc_layers,
        bn=args.bn,
    )
    train(train_dataset, model, args, test_dataset=test_dataset)
    evaluate(test_dataset, model, args, "Validation")
コード例 #3
0
def syn_task5(args, writer=None):
    # data
    G, labels, name = gnnexplainer_gengraph.gen_syn5(
        feature_generator=featgen.ConstFeatureGen(
            np.ones(args.input_dim, dtype=float)))
    print(labels)
    print("Number of nodes: ", G.number_of_nodes())
    num_classes = max(labels) + 1

    if args.method == "attn":
        print("Method: attn")
    else:
        print("Method: base")
        model = models.GcnEncoderNode(
            args.input_dim,
            args.hidden_dim,
            args.output_dim,
            num_classes,
            args.num_gc_layers,
            bn=args.bn,
            args=args,
        )

        if args.gpu:
            model = model

    train_node_classifier(G, labels, model, args, writer=writer)
コード例 #4
0
def benchmark_task_val(args, writer=None, feat="node-label"):
    all_vals = []
    graphs = io_utils.read_graphfile(args.datadir,
                                     args.bmname,
                                     max_nodes=args.max_nodes)

    if feat == "node-feat" and "feat_dim" in graphs[0].graph:
        print("Using node features")
        input_dim = graphs[0].graph["feat_dim"]
    elif feat == "node-label" and "label" in graphs[0].nodes[0]:
        print("Using node labels")
        for G in graphs:
            for u in G.nodes():
                G.nodes[u]["feat"] = np.array(G.nodes[u]["label"])
    else:
        print("Using constant labels")
        featgen_const = featgen.ConstFeatureGen(
            np.ones(args.input_dim, dtype=float))
        for G in graphs:
            featgen_const.gen_node_features(G)

    # 10 splits
    for i in range(10):
        train_dataset, val_dataset, max_num_nodes, input_dim, assign_input_dim = cross_val.prepare_val_data(
            graphs, args, i, max_nodes=args.max_nodes)
        print("Method: base")
        model = models.GcnEncoderGraph(
            input_dim,
            args.hidden_dim,
            args.output_dim,
            args.num_classes,
            args.num_gc_layers,
            bn=args.bn,
            dropout=args.dropout,
            args=args,
        )

        _, val_accs = train(
            train_dataset,
            model,
            args,
            val_dataset=val_dataset,
            test_dataset=None,
            writer=writer,
        )
        all_vals.append(np.array(val_accs))
    all_vals = np.vstack(all_vals)
    all_vals = np.mean(all_vals, axis=0)
    print(all_vals)
    print(np.max(all_vals))
    print(np.argmax(all_vals))
コード例 #5
0
def enron_task(args, idx=None, writer=None):
    labels_dict = {
        "None": 5,
        "Employee": 0,
        "Vice President": 1,
        "Manager": 2,
        "Trader": 3,
        "CEO+Managing Director+Director+President": 4,
    }
    max_enron_id = 183
    if idx is None:
        G_list = []
        labels_list = []
        for i in range(10):
            net = pickle.load(
                open("data/gnn-explainer-enron/enron_slice_{}.pkl".format(i),
                     "rb"))
            # net.add_nodes_from(range(max_enron_id))
            # labels=[n[1].get('role', 'None') for n in net.nodes(data=True)]
            # labels_num = [labels_dict[l] for l in labels]
            featgen_const = featgen.ConstFeatureGen(
                np.ones(args.input_dim, dtype=float))
            featgen_const.gen_node_features(net)
            G_list.append(net)
            print(net.number_of_nodes())
            # labels_list.append(labels_num)

        G = nx.disjoint_union_all(G_list)
        model = models.GcnEncoderNode(
            args.input_dim,
            args.hidden_dim,
            args.output_dim,
            len(labels_dict),
            args.num_gc_layers,
            bn=args.bn,
            args=args,
        )
        labels = [n[1].get("role", "None") for n in G.nodes(data=True)]
        labels_num = [labels_dict[l] for l in labels]
        for i in range(5):
            print("Label ", i, ": ", labels_num.count(i))

        print("Total num nodes: ", len(labels_num))
        print(labels_num)

        if args.gpu:
            model = model
        train_node_classifier(G, labels_num, model, args, writer=writer)
    else:
        print("Running Enron full task")
コード例 #6
0
def enron_task_multigraph(args, idx=None, writer=None):
    labels_dict = {
        "None": 5,
        "Employee": 0,
        "Vice President": 1,
        "Manager": 2,
        "Trader": 3,
        "CEO+Managing Director+Director+President": 4,
    }
    max_enron_id = 183
    if idx is None:
        G_list = []
        labels_list = []
        for i in range(10):
            net = pickle.load(
                open("data/gnn-explainer-enron/enron_slice_{}.pkl".format(i),
                     "rb"))
            net.add_nodes_from(range(max_enron_id))
            labels = [n[1].get("role", "None") for n in net.nodes(data=True)]
            labels_num = [labels_dict[l] for l in labels]
            featgen_const = featgen.ConstFeatureGen(
                np.ones(args.input_dim, dtype=float))
            featgen_const.gen_node_features(net)
            G_list.append(net)
            labels_list.append(labels_num)
        # train_dataset, test_dataset, max_num_nodes = prepare_data(G_list, args)
        model = models.GcnEncoderNode(
            args.input_dim,
            args.hidden_dim,
            args.output_dim,
            args.num_classes,
            args.num_gc_layers,
            bn=args.bn,
            args=args,
        )
        if args.gpu:
            model = model
        print(labels_num)
        train_node_classifier_multigraph(G_list,
                                         labels_list,
                                         model,
                                         args,
                                         writer=writer)
    else:
        print("Running Enron full task")
コード例 #7
0
def gen_syn4(nb_shapes=60, width_basis=8, feature_generator=None, m=4):
    """ Synthetic Graph #4:

    Start with a tree and attach cycle-shaped subgraphs.

    Args:
        nb_shapes         :  The number of shapes (here 'houses') that should be added to the base graph.
        width_basis       :  The width of the basis graph (here a random 'Tree').
        feature_generator :  A `FeatureGenerator` for node features. If `None`, add constant features to nodes.
        m                 :  The tree depth.

    Returns:
        G                 :  A networkx graph
        role_id           :  Role ID for each node in synthetic graph
        name              :  A graph identifier
    """
    basis_type = "tree"
    list_shapes = [["cycle", 6]] * nb_shapes

    fig = plt.figure(figsize=(8, 6), dpi=300)

    G, role_id, plugins = synthetic_structsim.build_graph(width_basis,
                                                          basis_type,
                                                          list_shapes,
                                                          start=0)
    G = perturb([G], 0.01)[0]

    if feature_generator is None:
        feature_generator = featgen.ConstFeatureGen(1)
    feature_generator.gen_node_features(G)

    name = basis_type + "_" + str(width_basis) + "_" + str(nb_shapes)

    path = os.path.join("log/syn4_base_h20_o20")
    writer = SummaryWriter(path)
    io_utils.log_graph(writer, G, "graph/full")

    return G, role_id, name
コード例 #8
0
def benchmark_task(args, writer=None, feat="node-label"):
    graphs = io_utils.read_graphfile(args.datadir,
                                     args.bmname,
                                     max_nodes=args.max_nodes)
    print(max([G.graph["label"] for G in graphs]))

    if feat == "node-feat" and "feat_dim" in graphs[0].graph:
        print("Using node features")
        input_dim = graphs[0].graph["feat_dim"]
    elif feat == "node-label" and "label" in graphs[0].nodes[0]:
        print("Using node labels")
        for G in graphs:
            for u in G.nodes():
                G.nodes[u]["feat"] = np.array(G.nodes[u]["label"])
                # make it -1/1 instead of 0/1
                # feat = np.array(G.nodes[u]['label'])
                # G.nodes[u]['feat'] = feat * 2 - 1
    else:
        print("Using constant labels")
        featgen_const = featgen.ConstFeatureGen(
            np.ones(args.input_dim, dtype=float))
        for G in graphs:
            featgen_const.gen_node_features(G)

    train_dataset, val_dataset, test_dataset, max_num_nodes, input_dim, assign_input_dim = prepare_data(
        graphs, args, max_nodes=args.max_nodes)
    if args.method == "soft-assign":
        print("Method: soft-assign")
        model = models.SoftPoolingGcnEncoder(
            max_num_nodes,
            input_dim,
            args.hidden_dim,
            args.output_dim,
            args.num_classes,
            args.num_gc_layers,
            args.hidden_dim,
            assign_ratio=args.assign_ratio,
            num_pooling=args.num_pool,
            bn=args.bn,
            dropout=args.dropout,
            linkpred=args.linkpred,
            args=args,
            assign_input_dim=assign_input_dim,
        )
    else:
        print("Method: base")
        model = models.GcnEncoderGraph(
            input_dim,
            args.hidden_dim,
            args.output_dim,
            args.num_classes,
            args.num_gc_layers,
            bn=args.bn,
            dropout=args.dropout,
            args=args,
        )

    train(
        train_dataset,
        model,
        args,
        val_dataset=val_dataset,
        test_dataset=test_dataset,
        writer=writer,
    )
    evaluate(test_dataset, model, args, "Validation")
コード例 #9
0
def read_biosnap(datadir,
                 edgelist_file,
                 label_file,
                 feat_file=None,
                 concat=True):
    """ Read data from BioSnap

    Returns:
        List of networkx objects with graph and node labels
    """
    G = nx.Graph()
    delimiter = "\t" if "tsv" in edgelist_file else ","
    print(delimiter)
    df = pd.read_csv(os.path.join(datadir, edgelist_file),
                     delimiter=delimiter,
                     header=None)
    data = list(map(tuple, df.values.tolist()))
    G.add_edges_from(data)
    print("Total nodes: ", G.number_of_nodes())

    G = max(nx.connected_component_subgraphs(G), key=len)
    print("Total nodes in largest connected component: ", G.number_of_nodes())

    df = pd.read_csv(os.path.join(datadir, label_file),
                     delimiter="\t",
                     usecols=[0, 1])
    data = list(map(tuple, df.values.tolist()))

    missing_node = 0
    for line in data:
        if int(line[0]) not in G:
            missing_node += 1
        else:
            G.nodes[int(line[0])]["label"] = int(line[1] == "Essential")

    print("missing node: ", missing_node)

    missing_label = 0
    remove_nodes = []
    for u in G.nodes():
        if "label" not in G.nodes[u]:
            missing_label += 1
            remove_nodes.append(u)
    G.remove_nodes_from(remove_nodes)
    print("missing_label: ", missing_label)

    if feat_file is None:
        feature_generator = featgen.ConstFeatureGen(np.ones(10, dtype=float))
        feature_generator.gen_node_features(G)
    else:
        df = pd.read_csv(os.path.join(datadir, feat_file), delimiter=",")
        data = np.array(df.values)
        print("Feat shape: ", data.shape)

        for row in data:
            if int(row[0]) in G:
                if concat:
                    node = int(row[0])
                    onehot = np.zeros(10)
                    onehot[min(G.degree[node], 10) - 1] = 1.0
                    G.nodes[node]["feat"] = np.hstack(
                        (np.log(row[1:] + 0.1), [1.0], onehot))
                else:
                    G.nodes[int(row[0])]["feat"] = np.log(row[1:] + 0.1)

        missing_feat = 0
        remove_nodes = []
        for u in G.nodes():
            if "feat" not in G.nodes[u]:
                missing_feat += 1
                remove_nodes.append(u)
        G.remove_nodes_from(remove_nodes)
        print("missing feat: ", missing_feat)

    return G