コード例 #1
0
ファイル: datasets.py プロジェクト: valence-discovery/lapool
    def __init__(self, X, y, mols, w=None, cuda=False, pad_to=-1, **kwargs):
        self.cuda = cuda
        self.adj = []
        self.x = []
        self.w = None
        self.mols = mols
        if pad_to is None:
            pad_to = -1

        l = 0 or X[0][-1].shape[-1]
        fake_atom = to_tensor(np.zeros(l), dtype=torch.float32, gpu=cuda)
        self.pad_x = partial(pad_feats,
                             no_atom_tensor=fake_atom,
                             max_num_node=pad_to)
        self.pad = partial(pad_graph, max_num_node=pad_to)

        if len(X) > 0:
            self.adj, self.x = zip(*X)
            self.adj = list(self.adj)
            self.x = list(self.x)
            self.y = to_tensor(y, gpu=self.cuda, dtype=torch.float32)
            if w is not None:
                self.w = w.reshape(y.shape[0], -1)
                self.w = to_tensor(self.w, gpu=self.cuda, dtype=torch.float32)

        for k, v in kwargs.items():
            setattr(self, k, v)
コード例 #2
0
ファイル: data.py プロジェクト: violetguos/lapool
 def __init__(self, X, y, mols, w=None, cuda=False, pad_to=-1, **kwargs):
     self.cuda = cuda
     self.w = None
     self.G = []
     self.feat = []
     self.add_feat = []
     self.mols = mols
     self.pad = partial(pad_graph, max_num_node=pad_to)
     fake_atom = to_tensor(one_of_k_encoding('*', const.ATOM_LIST),
                           dtype=torch.float32,
                           gpu=cuda)
     self.pad_x = partial(pad_feats,
                          no_atom_tensor=fake_atom,
                          max_num_node=pad_to)
     if len(X) > 0:
         self.G, self.feat, *self.add_feat = zip(*X)
         self.G = list(self.G)
         self.feat = list(self.feat)
         self.y = to_tensor(y, gpu=self.cuda, dtype=torch.float32)
         if self.add_feat:
             self.add_feat = self.add_feat[0]
         if w is not None:
             self.w = w.reshape(y.shape[0], -1)
             self.w = to_tensor(self.w, gpu=self.cuda, dtype=torch.float32)
     for k, v in kwargs.items():
         setattr(self, k, v)
コード例 #3
0
ファイル: datasets.py プロジェクト: siddharthdivi/lapool
 def X(self):
     G, F = self.adj, self.x
     G = [self.pad(to_tensor(g_i, gpu=self.cuda, dtype=torch.float32))
          for g_i in G]
     F = [self.pad_x(to_tensor(f_i, gpu=self.cuda, dtype=torch.float32))
          for f_i in F]
     return list(zip(G, F))
コード例 #4
0
ファイル: datasets.py プロジェクト: valence-discovery/lapool
    def __getitem__(self, idx):
        g_i, f_i = self.adj[idx], self.x[idx]
        true_nodes = g_i.shape[0]
        if not isinstance(g_i, torch.Tensor):
            # remove edge dim if exist
            g_i = self.pad(to_tensor(g_i, gpu=self.cuda,
                                     dtype=torch.float32)).squeeze()
        if not isinstance(f_i, torch.Tensor):
            f_i = self.pad_x(to_tensor(f_i, gpu=self.cuda,
                                       dtype=torch.float32))
        y_i = self.y[idx, None]
        # add mask for binary
        m_i = torch.zeros(g_i.shape[-1])
        m_i[torch.arange(true_nodes)] = 1
        m_i = m_i.unsqueeze(-1)

        if self.w is not None:
            w_i = self.w[idx, None]
            return (g_i, f_i, m_i), self.mols[idx], y_i, w_i
        return (g_i, f_i, m_i), self.mols[idx], y_i
コード例 #5
0
ファイル: data.py プロジェクト: violetguos/lapool
 def __getitem__(self, idx):
     g_i, f_i = self.G[idx], self.feat[idx]
     if not isinstance(g_i, torch.Tensor):
         g_i = self.pad(to_tensor(g_i, gpu=self.cuda, dtype=torch.float32))
     if not isinstance(f_i, torch.Tensor):
         f_i = self.pad_x(to_tensor(f_i, gpu=self.cuda,
                                    dtype=torch.float32))
     X_i = (g_i, f_i)
     if self.add_feat:
         af_i = self.add_feat[idx]
         if not isinstance(af_i, torch.Tensor):
             af_i = self.pad_x(to_tensor(af_i,
                                         gpu=self.cuda,
                                         dtype=torch.float32),
                               no_atom_tensor=None)
         X_i += (af_i, )
     y_i = self.y[idx, None]
     if self.w is not None:
         w_i = self.w[idx, None]
         return (*X_i, self.mols[idx]), y_i, w_i
     return (*X_i, self.mols[idx]), y_i
コード例 #6
0
ファイル: datasets.py プロジェクト: siddharthdivi/lapool
    def __getitem__(self, idx):
        mol_i = to_mol(self.smiles[idx]) 
        graph = self.transformer.transform([self.smiles[idx]])
        g_i, f_i = graph[0][0], graph[0][1]        
        fake_atoms = torch.zeros(f_i.shape[-1])
        fake_atoms[-1] = 1
        true_nodes = g_i.shape[0]
        if not isinstance(g_i, torch.Tensor):
            g_i = pad_graph(to_tensor(g_i, gpu=self.cuda, dtype=torch.float32), max_num_node=self.pad_to).squeeze()
        
        if not isinstance(f_i, torch.Tensor):
            f_i = pad_feats(to_tensor(f_i, gpu=self.cuda, dtype=torch.float32), no_atom_tensor=fake_atoms, max_num_node=self.pad_to)
     
        # add mask for binary
        m_i = torch.zeros(g_i.shape[0])
        m_i[torch.arange(true_nodes)] = 1
        m_i = m_i.unsqueeze(-1)
        if g_i.dim() == 2:
            g_i = g_i.unsqueeze(-1)

        return (g_i, f_i, m_i), mol_i, torch.ones(1) #