コード例 #1
0
def test_init_exceptions():
    '''
    test exceptions raised during __init__
    '''
    with raises(ValueError):
        # must be filename, not dir name
        NetCDFOutput(os.path.abspath(os.path.dirname(__file__)))

    with raises(ValueError):
        NetCDFOutput('invalid_path_to_file/file.nc')
コード例 #2
0
def allWeatherers(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    map_folder = os.path.join(data_path, map_path)
    if not(os.path.exists(map_folder)):
        print('The map folder is incorrectly set:', map_folder)
    mapfile = get_datafile( os.path.join(map_folder,map) )
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=1))
    if save_nc:
        nc_outputter = NetCDFOutput(netcdf_file, which_data='most', output_timestep=timedelta(hours=1))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    print 'adding weatherers'
    water = Water(280.92)
    wind = constant_wind(20.0, 117, 'knots')
    waves = Waves(wind, water)
    model.weatherers += Evaporation(water, wind)
    model.weatherers += Emulsification(waves)
    model.weatherers += NaturalDispersion(waves, water)
    return model
コード例 #3
0
def model(sample_model_fcn, output_filename):
    """
    Use fixture model_surface_release_spill and add a few things to it for the
    test
    """
    model = sample_model_fcn['model']

    model.cache_enabled = True
    model.spills += \
        point_line_release_spill(num_elements=5,
                                 start_position=sample_model_fcn['release_start_pos'],
                                 release_time=model.start_time,
                                 end_release_time=model.start_time + model.duration,
                                 substance=test_oil,
                                 amount=1000,
                                 units='kg')

    water = Water()
    model.movers += RandomMover(diffusion_coef=100000)
    model.movers += constant_wind_mover(1.0, 0.0)
    model.weatherers += Evaporation(water=water, wind=model.movers[-1].wind)

    model.outputters += NetCDFOutput(output_filename)

    model.rewind()

    return model
コード例 #4
0
def CurrentsAndWinds(timeStep, start_time, duration, weatheringSteps, mapfile, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    print (data_path, map_path, mapfile)
    mapfile = get_datafile(os.path.join(data_path, map_path, mapfile))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=timestep_outputs))
    if save_nc:
        nc_outputter = NetCDFOutput('currentsAndWinds_example.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    return model
コード例 #5
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2012, 9, 15, 12, 0)
    mapfile = get_datafile(os.path.join(base_dir, './LongIslandSoundMap.BNA'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=48),
                  time_step=3600,
                  map=gnome_map,
                  uncertain=True,
                  cache_enabled=True)

    netcdf_file = os.path.join(base_dir, 'script_long_island.nc')
    scripting.remove_netcdf(netcdf_file)

    print 'adding outputters'
    model.outputters += Renderer(mapfile, images_dir, size=(800, 600))
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-72.419992, 41.202120,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=500000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (10, 45))
    series[1] = (start_time + timedelta(hours=18), (10, 90))
    series[2] = (start_time + timedelta(hours=30), (10, 135))
    series[3] = (start_time + timedelta(hours=42), (10, 180))
    series[4] = (start_time + timedelta(hours=54), (10, 225))

    wind = Wind(timeseries=series, units='m/s')
    model.movers += WindMover(wind)

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, r"./LI_tidesWAC.CUR"))
    tide_file = get_datafile(os.path.join(base_dir, r"./CLISShio.txt"))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))
    model.movers += c_mover
    model.environment += c_mover.tide

    print 'viewport is:', [
        o.viewport for o in model.outputters if isinstance(o, Renderer)
    ]

    return model
コード例 #6
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, 'LowerMississippiMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    print 'initializing the model'
    start_time = datetime(2012, 9, 15, 12, 0)

    # default to now, rounded to the nearest hour
    model = Model(time_step=600,
                  start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map,
                  uncertain=True)

    print 'adding outputters'
    model.outputters += Renderer(mapfile, images_dir, image_size=(800, 600))

    netcdf_file = os.path.join(base_dir, 'script_lower_mississippi.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'

    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (2, 45))
    series[1] = (start_time + timedelta(hours=18), (2, 90))
    series[2] = (start_time + timedelta(hours=30), (2, 135))
    series[3] = (start_time + timedelta(hours=42), (2, 180))
    series[4] = (start_time + timedelta(hours=54), (2, 225))

    w_mover = WindMover(Wind(timeseries=series, units='m/s'))
    model.movers += w_mover

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'LMiss.CUR'))
    c_mover = CatsMover(curr_file)

    # but do need to scale (based on river stage)
    c_mover.scale = True
    c_mover.scale_refpoint = (-89.699944, 29.494558)

    # based on stage height 10ft (range is 0-18)
    c_mover.scale_value = 1.027154

    model.movers += c_mover

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-89.699944, 29.494558,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    return model
コード例 #7
0
    def _make_run_model(spill, nc_name):
        'internal funtion'
        m = Model()
        m.outputters += NetCDFOutput(nc_name)
        m.spills += spill

        _run_model(m)
        return m
コード例 #8
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'
    start_time = datetime(2006, 3, 31, 20, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3),
                  time_step=30 * 60,
                  uncertain=True)

    print 'adding the map'
    mapfile = get_datafile(os.path.join(base_dir, 'coastSF.bna'))
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds

    renderer = Renderer(mapfile,
                        images_dir,
                        image_size=(800, 600),
                        draw_ontop='forecast')
    renderer.viewport = ((-124.5, 37.), (-120.5, 39))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_sf_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(
        num_elements=1000,
        start_position=(-123.57152, 37.369436, 0.0),
        release_time=start_time,
        substance=NonWeatheringSubstance(windage_range=(0.01, .04))
        #element_type=floating(windage_range=(0.01,
        #                                     0.04)
        #                      )
    )
    model.spills += spill

    # print 'adding a RandomMover:'
    # r_mover = gnome.movers.RandomMover(diffusion_coef=50000)
    # model.movers += r_mover

    print 'adding a grid wind mover:'
    wind_file = get_datafile(os.path.join(base_dir, 'WindSpeedDirSubset.nc'))
    topology_file = get_datafile(
        os.path.join(base_dir, 'WindSpeedDirSubsetTop.dat'))
    w_mover = GridWindMover(wind_file, topology_file)

    # w_mover.uncertain_time_delay = 6
    # w_mover.uncertain_duration = 6
    w_mover.uncertain_speed_scale = 1
    w_mover.uncertain_angle_scale = 0.2  # default is .4
    w_mover.wind_scale = 2

    model.movers += w_mover

    return model
コード例 #9
0
    def _make_run_model(spill, nc_name):
        'internal function'
        release_time = spill.release.release_time

        m = Model(start_time=release_time)
        m.outputters += NetCDFOutput(nc_name)
        m.spills += spill

        _run_model(m)
        return m
コード例 #10
0
def make_models():
    print 'initializing the model'

    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    models = []
    start_time = datetime(2012, 10, 27, 0, 30)
    duration_hrs=23
    time_step=450
    num_steps = duration_hrs * 3600 / time_step
    names = [
             'Euler',
             'Trapezoid',
             'RK4',
             ]

    mapfile = get_datafile(os.path.join(base_dir, 'long_beach.bna'))
    print 'gen map'
    map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds
    fn = ('00_dir_roms_display.ncml.nc4')
    curr = GridCurrent.from_netCDF(filename=fn)
    models = []
    for method in names:

        mod = Model(start_time=start_time,
                    duration=timedelta(hours=duration_hrs),
                    time_step=time_step)

        mod.map = map
        spill = point_line_release_spill(num_elements=1000,
                                         start_position=(-74.1,
                                                      39.7525,
                                                      0.0),
                                         release_time=start_time)
        mod.spills += spill
        mod.movers += RandomMover(diffusion_coef=100)
        mod.movers += PyGridCurrentMover(current=curr, default_num_method=method)

        images_dir = method + '-' + str(time_step / 60) + 'min-' + str(num_steps) + 'steps'
        renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
        renderer.delay = 25
#         renderer.add_grid(curr.grid)
        mod.outputters += renderer


        netCDF_fn = os.path.join(base_dir, images_dir + '.nc')
        mod.outputters += NetCDFOutput(netCDF_fn, which_data='all')
        models.append(mod)

    print 'returning models'
    return models
コード例 #11
0
ファイル: GNOME_run.py プロジェクト: sypcloud/HyosPy
def make_model(images_dir=os.path.join(base_dir,"images")):
    print "initializing the model"

    start_time = datetime(2013, 7, 23, 0)
    model = Model(start_time = start_time,
                              duration = timedelta(hours=47),	# n+1 of data in file
                              time_step = 900, # 4 hr in seconds
                              uncertain = False,
                              )
    
    mapfile = os.path.join(base_dir, './coast.bna')
    print "adding the map"
    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours
    
    print "adding renderer" 
    model.outputters += Renderer(mapfile, images_dir, size=(1800, 1600))

    print "adding a wind mover from a time-series"
    ## this is wind
    wind_file=get_datafile(os.path.join(base_dir, 'wind.WND'))
    wind = Wind(filename=wind_file)
    w_mover = WindMover(wind)
    model.movers += w_mover
    
    print "adding a current mover:"
    ## this is currents
    curr_file = get_datafile(os.path.join(base_dir, 'current.txt'))
    model.movers += GridCurrentMover(curr_file)

    ##
    ## Add some spills (sources of elements)
    ##
    print "adding 13 points in a cluster that has some small initial separation as the source of spill"
    
    for i in range(len(coor)):
        
        aaa=utmToLatLng(14,coor[i][0],coor[i][1],northernHemisphere=True)
        model.spills += point_line_release_spill(num_elements=1,
                                                start_position = (aaa[1],aaa[0], 0.0),
                                                release_time = start_time,
                                                )

    print "adding netcdf output"
    netcdf_output_file = os.path.join(base_dir,'GNOME_output.nc')
    scripting.remove_netcdf(netcdf_output_file)
    model.outputters += NetCDFOutput(netcdf_output_file, which_data='all')

    return model
コード例 #12
0
def only_Winds(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    mapfile = get_datafile(os.path.join(data_path, map_path, map))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=timestep_outputs))
    if save_nc:
        nc_outputter = NetCDFOutput(netcdf_file, which_data='most', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    return model
コード例 #13
0
def test_exceptions(output_filename):
    spill_pair = SpillContainerPair()

    print "output_filename:", output_filename
    # begin tests
    netcdf = NetCDFOutput(output_filename, which_data='all')
    netcdf.rewind()  # delete temporary files

    with raises(TypeError):
        # need to pass in model start time
        netcdf.prepare_for_model_run(num_time_steps=4)

    with raises(TypeError):
        # need to pass in model start time and spills
        netcdf.prepare_for_model_run()

    with raises(ValueError):
        # need a cache object
        netcdf.write_output(0)

    with raises(ValueError):
        netcdf.which_data = 'some random string'

    # changed renderer and netcdf ouputter to delete old files in
    # prepare_for_model_run() rather than rewind()
    # -- rewind() was getting called a lot
    # -- before there was time to change the ouput file names, etc.
    # So for this unit test, there should be no exception if we do it twice.
    netcdf.prepare_for_model_run(model_start_time=datetime.now(),
                                 spills=spill_pair,
                                 num_time_steps=4)
    netcdf.prepare_for_model_run(model_start_time=datetime.now(),
                                 spills=spill_pair,
                                 num_time_steps=4)

    with raises(AttributeError):
        'cannot change after prepare_for_model_run has been called'
        netcdf.prepare_for_model_run(model_start_time=datetime.now(),
                                     spills=spill_pair,
                                     num_time_steps=4)
        netcdf.which_data = 'most'
コード例 #14
0
def make_model(images_dir):
    print 'initializing the model'

    timestep = timedelta(minutes=15)  # this is already default
    start_time = datetime(2012, 9, 15, 12, 0)
    model = Model(timestep, start_time)

    # timeseries for wind data. The value is interpolated if time is between
    # the given datapoints
    series = np.zeros((4, ), dtype=datetime_value_2d)
    series[:] = [(start_time, (5, 180)),
                 (start_time + timedelta(hours=6), (10, 180)),
                 (start_time + timedelta(hours=12), (12, 180)),
                 (start_time + timedelta(hours=18), (8, 180))]
    wind = Wind(timeseries=series, units='m/s')
    model.environment += wind

    # include a wind mover and random diffusion
    print 'adding movers'
    model.movers += [WindMover(wind), RandomMover()]

    # add particles
    print 'adding particles'
    release = release_from_splot_data(start_time,
                                      'GL.2013267._LE_WHOLELAKE.txt')
    model.spills += Spill(release)

    # output data as png images and in netcdf format
    print 'adding outputters'
    netcdf_file = os.path.join(base_dir, 'script_example.nc')

    # ignore renderer for now
    model.outputters += [
        Renderer(images_dir=images_dir,
                 size=(800, 800),
                 projection_class=GeoProjection),
        NetCDFOutput(netcdf_file)
    ]

    print 'model complete'
    return model
コード例 #15
0
def test_serialize_deserialize(json_, output_filename):
    '''
    todo: this behaves in unexpected ways when using the 'model' testfixture.
    For now, define a model in here for the testing - not sure where the
    problem lies
    '''
    s_time = datetime(2014, 1, 1, 1, 1, 1)
    model = Model(start_time=s_time)
    model.spills += point_line_release_spill(num_elements=5,
                                             start_position=(0, 0, 0),
                                             release_time=model.start_time)

    o_put = NetCDFOutput(output_filename)
    model.outputters += o_put
    model.movers += RandomMover(diffusion_coef=100000)

    # ==========================================================================
    # o_put = [model.outputters[outputter.id]
    #          for outputter in model.outputters
    #          if isinstance(outputter, NetCDFOutput)][0]
    # ==========================================================================

    model.rewind()
    print "step: {0}, _start_idx: {1}".format(-1, o_put._start_idx)
    for ix in range(2):
        model.step()
        print "step: {0}, _start_idx: {1}".format(ix, o_put._start_idx)

    dict_ = o_put.deserialize(o_put.serialize(json_))
    o_put2 = NetCDFOutput.new_from_dict(dict_)
    if json_ == 'save':
        assert o_put == o_put2
    else:
        # _start_idx and _middle_of_run should not match
        assert o_put._start_idx != o_put2._start_idx
        assert o_put._middle_of_run != o_put2._middle_of_run
        assert o_put != o_put2

    if os.path.exists(o_put.netcdf_filename):
        print '\n{0} exists'.format(o_put.netcdf_filename)
コード例 #16
0
def make_model():
    duration_hrs = 48
    time_step = 900
    num_steps = duration_hrs * 3600 / time_step
    mod = Model(start_time=t,
                duration=timedelta(hours=duration_hrs),
                time_step=time_step)

    spill = point_line_release_spill(num_elements=1000,
                                     amount=1600,
                                     units='kg',
                                     start_position=(0.5, 0.5, 0.0),
                                     release_time=t,
                                     end_release_time=t + timedelta(hours=4))
    mod.spills += spill

    method = 'Trapezoid'
    images_dir = method + '-' + str(
        time_step / 60) + 'min-' + str(num_steps) + 'steps'
    renderer = Renderer(output_dir=images_dir, image_size=(800, 800))
    renderer.delay = 5
    renderer.add_grid(g)
    renderer.add_vec_prop(vg)

    renderer.graticule.set_max_lines(max_lines=0)
    mod.outputters += renderer

    mod.movers += PyCurrentMover(current=vg,
                                 default_num_method=method,
                                 extrapolate=True)
    mod.movers += RandomMover(diffusion_coef=10)

    netCDF_fn = os.path.join(base_dir, images_dir + '.nc')
    mod.outputters += NetCDFOutput(netCDF_fn, which_data='all')

    return mod
コード例 #17
0
def make_modelF(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td, dif_coef,temp_water):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration, uncertain=uncertain)
    print 'adding the map:'
    mapfile = get_datafile(os.path.join(data_path, map_path, map))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'

    if save_nc:
        scripting.remove_netcdf(output_path+'/'+'output.nc')
        nc_outputter = NetCDFOutput(output_path+'/'+'output.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter

    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    # wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=dif_coef)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)#, substance='AD04001', amount=9600000, units='kg')

    if weatherers:
        print 'adding weatherers'
        water = Water(temp_water)
        wind = constant_wind(0.0001, 0, 'knots')
        waves = Waves(wind, water)
        model.weatherers += Evaporation(water, wind)
    # model.weatherers += Emulsification(waves)
        model.weatherers += NaturalDispersion(waves, water)
    return model
コード例 #18
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2014, 6, 9, 0, 0)
    mapfile = get_datafile(os.path.join(base_dir, 'PassamaquoddyMap.bna'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=24), time_step=360,
                  map=gnome_map, uncertain=False, cache_enabled=True)

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        # output_timestep=timedelta(hours=1),
                        draw_ontop='uncertain')
    renderer.viewport = ((-67.15, 45.), (-66.9, 45.2))

    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_passamaquoddy.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-66.991344, 45.059316,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=30000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 90))
    series[1] = (start_time + timedelta(hours=18), (5, 180))
    series[2] = (start_time + timedelta(hours=30), (5, 135))
    series[3] = (start_time + timedelta(hours=42), (5, 180))
    series[4] = (start_time + timedelta(hours=54), (5, 225))

    wind = Wind(timeseries=series, units='m/s')
    model.movers += WindMover(wind)

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'PQBayCur.nc4'))
    topology_file = get_datafile(os.path.join(base_dir, 'PassamaquoddyTOP.dat')
                                 )
    tide_file = get_datafile(os.path.join(base_dir, 'EstesHead.txt'))

    cc_mover = CurrentCycleMover(curr_file, topology_file,
                                 tide=Tide(tide_file))

    model.movers += cc_mover
    model.environment += cc_mover.tide

    print 'viewport is:', [o.viewport
                           for o in model.outputters
                           if isinstance(o, Renderer)]

    return model
コード例 #19
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2013, 2, 13, 9, 0)

    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    mapfile = get_datafile(os.path.join(base_dir, 'GuamMap.bna'))
    model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, image_size=(800, 600))
    renderer.viewport = ((144.6, 13.4), (144.7, 13.5))
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_guam.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    end_time = start_time + timedelta(hours=6)
    spill = point_line_release_spill(num_elements=10,
                                     start_position=(144.664166, 13.441944,
                                                     0.0),
                                     release_time=start_time,
                                     end_release_time=end_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'
    series = np.zeros((4, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 135))
    series[1] = (start_time + timedelta(hours=23), (5, 135))
    series[2] = (start_time + timedelta(hours=25), (5, 0))
    series[3] = (start_time + timedelta(hours=48), (5, 0))

    wind = Wind(timeseries=series, units='knot')
    w_mover = WindMover(wind)
    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'OutsideWAC.cur'))
    c_mover = CatsMover(curr_file)

    c_mover.scale = True
    c_mover.scale_refpoint = (144.601, 13.42)
    c_mover.scale_value = .15

    model.movers += c_mover

    print 'adding a cats shio mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'WACFloodTide.cur'))
    tide_file = get_datafile(os.path.join(base_dir, 'WACFTideShioHts.txt'))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # this is different from the value in the file!
    c_mover.scale_refpoint = (144.621667, 13.45)

    c_mover.scale = True
    c_mover.scale_value = 1

    # will need the fScaleFactor for heights files
    # c_mover.time_dep.scale_factor = 1.1864
    c_mover.tide.scale_factor = 1.1864

    model.movers += c_mover
    model.environment += c_mover.tide

    return model
コード例 #20
0
            # set up the renderer
            image_dir = os.path.join(setup.ImagesPath, SeasonName, 'images_pos_%03i-time_%03i'%(pos_idx+1, time_idx))
            renderer = Renderer(os.path.join(setup.MapFileDir, setup.MapFileName),
                                image_dir,
                                image_size=(800, 600),
                                output_timestep=timedelta(hours=6))
            make_dir(image_dir)

            # setup netcdf
            netcdf_output_file = os.path.join(OutDir,
                                              'pos_%03i-t%03i_%08i.nc'%(pos_idx+1, time_idx,
                                                int(start_time.strftime('%y%m%d%H'))),
                                              )


            model.start_time = start_time

            ## clear the old outputters
            model.outputters.clear()
            model.outputters += renderer
            model.outputters += NetCDFOutput(netcdf_output_file,output_timestep=timedelta(hours=setup.GnomeOutputTimestepHours))

            # clear out the old spills:
            model.spills.clear()
            model.spills+=spill

            model.full_run(rewind=True)
 

コード例 #21
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    print('get contiguous')

    kml_file = os.path.join(base_dir, 'contigua.kml')
    with open(kml_file) as f:
        contiguous = parser.parse(f).getroot().Document

    coordinates = contiguous.Placemark.LineString.coordinates.text.split(' ')
    cont_coord = []
    for x in coordinates:
        x = x.split(',')
        if len(x) > 1 and float(x[1]) > -12 and float(x[1]) < -3:
            cont_coord.append([float(x[0]), float(x[1])])

    print('initializing the model')

    start_time = datetime(2022, 1, 22, 12, 0)
    mapfile = get_datafile(os.path.join(base_dir, './brazil-coast.BNA'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    duration = timedelta(days=1)
    timestep = timedelta(minutes=5)
    end_time = start_time + duration

    steps = duration.total_seconds() / timestep.total_seconds()

    print("Total step: %.4i " % (steps))

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=duration,
                  time_step=timestep,
                  map=gnome_map,
                  uncertain=False,
                  cache_enabled=False)

    oil_name = 'GENERIC MEDIUM CRUDE'

    wd = UniformDistribution(low=.0002, high=.0002)

    subs = GnomeOil(oil_name, initializers=plume_initializers(distribution=wd))

    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.153, -8.999, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.176, -9.135, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.062, -9.112, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-34.994, -9.248, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')

    for idx in range(0, len(cont_coord)):
        model.spills += point_line_release_spill(
            num_elements=500,
            start_position=(cont_coord[idx][0], cont_coord[idx][1], 0.0),
            release_time=start_time,
            end_release_time=start_time + timedelta(days=1),
            amount=500,
            substance=subs,
            units='kg')

    #shp_file = os.path.join(base_dir, 'surface_concentration')
    #scripting.remove_netcdf(shp_file + ".zip")
    #model.outputters += ShapeOutput(shp_file,
    #                                zip_output=False,
    #                                surface_conc="kde",
    #                                )

    print('adding movers:')

    print('adding a RandomMover:')
    model.movers += RandomMover(diffusion_coef=10000)

    print('adding a current mover:')

    # # this is HYCOM currents
    curr_file = get_datafile(os.path.join(base_dir, 'currents.nc'))
    model.movers += GridCurrentMover(curr_file, num_method='Euler')

    print('adding a grid wind mover:')
    wind_file = get_datafile(os.path.join(base_dir, 'wind.nc'))
    #topology_file = get_datafile(os.path.join(base_dir, 'WindSpeedDirSubsetTop.dat'))
    #w_mover = GridWindMover(wind_file, topology_file)
    w_mover = GridWindMover(wind_file)
    w_mover.uncertain_speed_scale = 1
    w_mover.uncertain_angle_scale = 0.2  # default is .4
    w_mover.wind_scale = 2

    model.movers += w_mover

    print('adding outputters')

    renderer = Renderer(mapfile,
                        images_dir,
                        image_size=(900, 600),
                        output_timestep=timestep,
                        draw_ontop='forecast')
    #set the viewport to zoom in on the map:
    #renderer.viewport = ((-37, -11), (-34, -8)) #alagoas
    renderer.viewport = ((-36, -10), (-30, 5))
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'contigua.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='standard',
                                     surface_conc='kde')

    return model
コード例 #22
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 5, 14, 0, 0)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=1.75),
                  time_step=60 * 60,
                  uncertain=True)

    #     mapfile = get_datafile(os.path.join(base_dir, './ak_arctic.bna'))
    #
    #     print 'adding the map'
    #     model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds
    #
    #     # draw_ontop can be 'uncertain' or 'forecast'
    #     # 'forecast' LEs are in black, and 'uncertain' are in red
    #     # default is 'forecast' LEs draw on top
    #     renderer = Renderer(mapfile, images_dir, size=(800, 600),
    #                         output_timestep=timedelta(hours=2),
    #                         draw_ontop='forecast')
    #
    #     print 'adding outputters'
    #     model.outputters += renderer

    model.outputters += WeatheringOutput()

    netcdf_file = os.path.join(base_dir, 'script_weatherers.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='all',
                                     output_timestep=timedelta(hours=1))

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    end_time = start_time + timedelta(hours=24)
    spill = point_line_release_spill(
        num_elements=100,
        start_position=(-164.791878561, 69.6252597267, 0.0),
        release_time=start_time,
        end_release_time=end_time,
        amount=1000,
        substance='ALASKA NORTH SLOPE (MIDDLE PIPELINE)',
        units='bbl')

    # set bullwinkle to .303 to cause mass goes to zero bug at 24 hours (when continuous release ends)
    spill.element_type._substance._bullwinkle = .303
    model.spills += spill

    print 'adding a RandomMover:'
    #model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (20, 0))
    series[1] = (start_time + timedelta(hours=23), (20, 0))

    wind2 = Wind(timeseries=series, units='knot')

    w_mover = WindMover(wind)
    model.movers += w_mover

    print 'adding weatherers and cleanup options:'

    # define skimmer/burn cleanup options
    skim1_start = start_time + timedelta(hours=15.58333)
    skim2_start = start_time + timedelta(hours=16)
    units = spill.units
    skimmer1 = Skimmer(80,
                       units=units,
                       efficiency=0.36,
                       active_start=skim1_start,
                       active_stop=skim1_start + timedelta(hours=8))
    skimmer2 = Skimmer(120,
                       units=units,
                       efficiency=0.2,
                       active_start=skim2_start,
                       active_stop=skim2_start + timedelta(hours=12))

    burn_start = start_time + timedelta(hours=36)
    burn = Burn(1000., .1, active_start=burn_start, efficiency=.2)

    chem_start = start_time + timedelta(hours=24)
    c_disp = ChemicalDispersion(0.5,
                                efficiency=0.4,
                                active_start=chem_start,
                                active_stop=chem_start + timedelta(hours=8))

    model.environment += [Water(280.928), wind, waves]

    model.weatherers += Evaporation(water, wind)
    model.weatherers += Emulsification(waves)
    model.weatherers += NaturalDispersion(waves, water)
    model.weatherers += skimmer1
    model.weatherers += skimmer2
    model.weatherers += burn
    model.weatherers += c_disp

    return model
コード例 #23
0
 GridCurrent.from_netCDF(testdata['GridCurrentMover']['curr_tri']),
 Tide(testdata['CatsMover']['tide']),
 Wind(filename=testdata['ComponentMover']['wind']),
 Wind(timeseries=(sec_to_date(24 * 60 * 60), (0, 0)), units='mps'),
 Water(temperature=273),
 RandomMover(),
 CatsMover(testdata['CatsMover']['curr']),
 CatsMover(testdata['CatsMover']['curr'],
           tide=Tide(testdata['CatsMover']['tide'])),
 ComponentMover(testdata['ComponentMover']['curr']),
 ComponentMover(testdata['ComponentMover']['curr'],
                wind=Wind(filename=testdata['ComponentMover']['wind'])),
 RandomMover3D(),
 SimpleMover(velocity=(10.0, 10.0, 0.0)),
 map.MapFromBNA(testdata['MapFromBNA']['testmap'], 6),
 NetCDFOutput(os.path.join(base_dir, u'xtemp.nc')),
 Renderer(testdata['Renderer']['bna_sample'],
          os.path.join(base_dir, 'output_dir')),
 WeatheringOutput(),
 spill.PointLineRelease(release_time=datetime.now(),
                        num_elements=10,
                        start_position=(0, 0, 0)),
 spill.point_line_release_spill(10, (0, 0, 0), datetime.now()),
 spill.substance.Substance(windage_range=(0.05, 0.07)),
 spill.substance.GnomeOil(test_oil, windage_range=(0.05, 0.07)),
 spill.substance.NonWeatheringSubstance(windage_range=(0.05, 0.07)),
 Skimmer(amount=100,
         efficiency=0.3,
         active_range=(datetime(2014, 1, 1, 0,
                                0), datetime(2014, 1, 1, 4, 0)),
         units='kg'),
コード例 #24
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, './MassBayMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    renderer = Renderer(mapfile,
                        images_dir,
                        size=(800, 800),
                        projection_class=GeoProjection)

    print 'initializing the model'
    start_time = datetime(2013, 3, 12, 10, 0)

    # 15 minutes in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=900,
                  start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map,
                  uncertain=False)

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_boston.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 180))
    series[1] = (start_time + timedelta(hours=18), (5, 180))

    w_mover = WindMover(Wind(timeseries=series, units='m/s'))
    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a cats shio mover:'

    curr_file = get_datafile(os.path.join(base_dir, r"./EbbTides.cur"))
    tide_file = get_datafile(os.path.join(base_dir, r"./EbbTidesShio.txt"))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # this is the value in the file (default)
    c_mover.scale_refpoint = (-70.8875, 42.321333)
    c_mover.scale = True
    c_mover.scale_value = -1

    model.movers += c_mover

    # TODO: cannot add this till environment base class is created
    model.environment += c_mover.tide

    print 'adding a cats ossm mover:'

    # ossm_file = get_datafile(os.path.join(base_dir,
    #                          r"./MerrimackMassCoastOSSM.txt"))
    curr_file = get_datafile(
        os.path.join(base_dir, r"./MerrimackMassCoast.cur"))
    tide_file = get_datafile(
        os.path.join(base_dir, r"./MerrimackMassCoastOSSM.txt"))
    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # but do need to scale (based on river stage)

    c_mover.scale = True
    c_mover.scale_refpoint = (-70.65, 42.58333)
    c_mover.scale_value = 1.
    model.movers += c_mover
    model.environment += c_mover.tide

    print 'adding a cats mover:'

    curr_file = get_datafile(os.path.join(base_dir, r"MassBaySewage.cur"))
    c_mover = CatsMover(curr_file)

    # but do need to scale (based on river stage)

    c_mover.scale = True
    c_mover.scale_refpoint = (-70.78333, 42.39333)

    # the scale factor is 0 if user inputs no sewage outfall effects
    c_mover.scale_value = .04

    model.movers += c_mover

    # pat1Angle 315;
    # pat1Speed 19.44; pat1SpeedUnits knots;
    # pat1ScaleToValue 0.138855
    #
    # pat2Angle 225;
    # pat2Speed 19.44; pat2SpeedUnits knots;
    # pat2ScaleToValue 0.05121
    #
    # scaleBy WindStress

    print "adding a component mover:"
    component_file1 = get_datafile(os.path.join(base_dir, r"./WAC10msNW.cur"))
    component_file2 = get_datafile(os.path.join(base_dir, r"./WAC10msSW.cur"))
    comp_mover = ComponentMover(component_file1, component_file2, w_mover.wind)

    # todo: callback did not work correctly below - fix!
    # comp_mover = ComponentMover(component_file1,
    #                             component_file2,
    #                             Wind(timeseries=series, units='m/s'))

    comp_mover.scale_refpoint = (-70.855, 42.275)
    comp_mover.pat1_angle = 315
    comp_mover.pat1_speed = 19.44
    comp_mover.pat1_speed_units = 1
    comp_mover.pat1ScaleToValue = .138855
    comp_mover.pat2_angle = 225
    comp_mover.pat2_speed = 19.44
    comp_mover.pat2_speed_units = 1
    comp_mover.pat2ScaleToValue = .05121

    model.movers += comp_mover

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-70.911432, 42.369142,
                                                     0.0),
                                     release_time=start_time,
                                     end_release_time=end_time)

    model.spills += spill

    return model
コード例 #25
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(1985, 1, 1, 13, 31)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=4),
                  time_step=7200)

    #     mapfile = get_datafile(os.path.join(base_dir, 'ak_arctic.bna'))
    mapfile = get_datafile('arctic_coast3.bna')

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    #     spill1 = point_line_release_spill(num_elements=10000,
    #                                       start_position=(-163.75,
    #                                                       69.75,
    #                                                       0.0),
    #                                       release_time=start_time)
    #
    spill1 = point_line_release_spill(num_elements=50000,
                                      start_position=(196.25, 69.75, 0.0),
                                      release_time=start_time)

    model.spills += spill1
    #     model.spills += spill2

    print 'adding a wind mover:'

    #     model.movers += constant_wind_mover(0.5, 0, units='m/s')

    print 'adding a current mover:'

    fn = ['arctic_avg2_0001_gnome.nc', 'arctic_avg2_0002_gnome.nc']

    #     fn = ['C:\\Users\\jay.hennen\\Documents\\Code\\pygnome\\py_gnome\\scripts\\script_TAP\\arctic_avg2_0001_gnome.nc',
    #           'C:\\Users\\jay.hennen\\Documents\\Code\\pygnome\\py_gnome\\scripts\\script_TAP\\arctic_avg2_0002_gnome.nc']

    gt = {'node_lon': 'lon', 'node_lat': 'lat'}
    #     fn='arctic_avg2_0001_gnome.nc'

    wind_method = 'Euler'
    method = 'RK2'
    print 'adding outputters'

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
    model.outputters += renderer
    netcdf_file = os.path.join(base_dir,
                               str(model.time_step / 60) + method + '.nc')
    scripting.remove_netcdf(netcdf_file)

    print 'adding movers'
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'loading entire current data'
    ice_aware_curr = IceAwareCurrent.from_netCDF(filename=fn, grid_topology=gt)

    #     env1 = get_env_from_netCDF(filename)
    #     mov = PyCurrentMover.from_netCDF(filename)

    ice_aware_curr.ice_velocity.variables[0].dimension_ordering = [
        'time', 'x', 'y'
    ]
    ice_aware_wind = IceAwareWind.from_netCDF(
        filename=fn,
        ice_velocity=ice_aware_curr.ice_velocity,
        ice_concentration=ice_aware_curr.ice_concentration,
        grid=ice_aware_curr.grid)

    curr = GridCurrent.from_netCDF(filename=fn)
    #     GridCurrent.is_gridded()

    #     import pprint as pp
    #     from gnome.utilities.orderedcollection import OrderedCollection
    #     model.environment = OrderedCollection(dtype=Environment)
    #     model.environment.add(ice_aware_curr)
    #     from gnome.environment import WindTS

    print 'loading entire wind data'

    #     i_c_mover = PyCurrentMover(current=ice_aware_curr)
    #     i_c_mover = PyCurrentMover(current=ice_aware_curr, default_num_method='Euler')
    i_c_mover = PyCurrentMover(current=ice_aware_curr,
                               default_num_method=method,
                               extrapolate=True)
    i_w_mover = PyWindMover(wind=ice_aware_wind,
                            default_num_method=wind_method)

    #     ice_aware_curr.grid.node_lon = ice_aware_curr.grid.node_lon[:]-360
    #     ice_aware_curr.grid.build_celltree()
    model.movers += i_c_mover
    model.movers += i_w_mover

    print 'adding an IceAwareRandomMover:'
    model.movers += IceAwareRandomMover(
        ice_concentration=ice_aware_curr.ice_concentration,
        diffusion_coef=1000)
    #     renderer.add_grid(ice_aware_curr.grid)
    #     renderer.add_vec_prop(ice_aware_curr)

    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover
    #     model.environment.add(WindTS.constant(10, 300))
    #     print('Saving')
    #     model.environment[0].ice_velocity.variables[0].serialize()
    #     IceVelocity.deserialize(model.environment[0].ice_velocity.serialize())
    #     model.save('.')
    #     from gnome.persist.save_load import load
    #     print('Loading')
    #     model2 = load('./Model.zip')

    return model
コード例 #26
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, 'DelawareRiverMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    renderer = Renderer(mapfile, images_dir, image_size=(800, 800),
                        projection_class=GeoProjection)

    print 'initializing the model'
    start_time = datetime(2012, 8, 20, 13, 0)

    # 15 minutes in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=900, start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map, uncertain=False)

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_delaware_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    # wind_file = get_datafile(os.path.join(base_dir, 'ConstantWind.WND'))
    # wind = Wind(filename=wind_file)

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 270))
    series[1] = (start_time + timedelta(hours=25), (5, 270))

    wind = Wind(timeseries=series, units='m/s')

    # w_mover = WindMover(Wind(timeseries=series, units='knots'))
    w_mover = WindMover(wind)
    model.movers += w_mover

    print 'adding a cats shio mover:'

    curr_file = get_datafile(os.path.join(base_dir, 'FloodTides.cur'))
    tide_file = get_datafile(os.path.join(base_dir, 'FloodTidesShio.txt'))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # this is the value in the file (default)
    c_mover.scale_refpoint = (-75.081667, 38.7995)
    c_mover.scale = True
    c_mover.scale_value = 1

    model.movers += c_mover

    # TODO: cannot add this till environment base class is created
    model.environment += c_mover.tide

    print 'adding a cats mover:'

    curr_file = get_datafile(os.path.join(base_dir, 'Offshore.cur'))
    c_mover = CatsMover(curr_file)

    # but do need to scale (based on river stage)

    c_mover.scale = True
    c_mover.scale_refpoint = (-74.7483333, 38.898333)
    c_mover.scale_value = .03
    model.movers += c_mover
    #
    # these are from windows they don't match Mac values...
    # pat1Angle 315;
    # pat1Speed 30; pat1SpeedUnits knots;
    # pat1ScaleToValue 0.314426
    #
    # pat2Angle 225;
    # pat2Speed 30; pat2SpeedUnits knots;
    # pat2ScaleToValue 0.032882
    # scaleBy WindStress

    print 'adding a component mover:'

    # if only using one current pattern
    # comp_mover = ComponentMover(curr_file1, None, wind)
    #
    # todo: following is not working when model is saved out - fix
    # comp_mover = ComponentMover(curr_file1, curr_file2,
    #                             Wind(timeseries=series, units='m/s'))
    # comp_mover = ComponentMover(curr_file1, curr_file2,
    #                             wind=Wind(filename=wind_file))

    curr_file1 = get_datafile(os.path.join(base_dir, 'NW30ktwinds.cur'))
    curr_file2 = get_datafile(os.path.join(base_dir, 'SW30ktwinds.cur'))
    comp_mover = ComponentMover(curr_file1, curr_file2, wind)

    comp_mover.scale_refpoint = (-75.263166, 39.1428333)

    comp_mover.pat1_angle = 315
    comp_mover.pat1_speed = 30
    comp_mover.pat1_speed_units = 1
    # comp_mover.pat1ScaleToValue = .314426
    comp_mover.pat1_scale_to_value = .502035

    comp_mover.pat2_angle = 225
    comp_mover.pat2_speed = 30
    comp_mover.pat2_speed_units = 1
    # comp_mover.pat2ScaleToValue = .032882
    comp_mover.pat2_scale_to_value = .021869

    model.movers += comp_mover

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=1000,
                                     release_time=start_time,
                                     # end_release_time=end_time,
                                     start_position=(-75.262319,
                                                     39.142987, 0.0),
                                     )

    model.spills += spill

    return model
コード例 #27
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(
        output_dir=images_dir,
        # size=(800, 600),
        output_timestep=timedelta(hours=1),
        draw_ontop='uncertain')
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     output_timestep=timedelta(hours=2))

    print 'adding two spills'
    # Break the spill into two spills, first with the larger droplets
    # and second with the smaller droplets.
    # Split the total spill volume (100 m^3) to have most
    # in the larger droplet spill.
    # Smaller droplets start at a lower depth than larger

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             min_=.0002)  # 200 micron min
    end_time = start_time + timedelta(hours=24)
    # spill = point_line_release_spill(num_elements=10,
    #                                  amount=90,  # default volume_units=m^3
    #                                  units='m^3',
    #                                  start_position=(-76.126872, 37.680952,
    #                                                  1700),
    #                                  release_time=start_time,
    #                                  end_release_time=end_time,
    #                                  element_type=plume(distribution=wd,
    #                                                     density=600)
    #                                  )

    spill = subsurface_plume_spill(
        num_elements=10,
        start_position=(-76.126872, 37.680952, 1700),
        release_time=start_time,
        distribution=wd,
        amount=90,  # default volume_units=m^3
        units='m^3',
        end_release_time=end_time,
        density=600)

    model.spills += spill

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             max_=.0002)  # 200 micron max
    spill = point_line_release_spill(
        num_elements=10,
        amount=90,
        units='m^3',
        start_position=(-76.126872, 37.680952, 1800),
        release_time=start_time,
        element_type=plume(distribution=wd, substance_name='oil_crude'))
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a RiseVelocityMover:'
    model.movers += RiseVelocityMover()

    print 'adding a RandomVerticalMover:'
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    # print 'adding a wind mover:'

    # series = np.zeros((2, ), dtype=gnome.basic_types.datetime_value_2d)
    # series[0] = (start_time, (30, 90))
    # series[1] = (start_time + timedelta(hours=23), (30, 90))

    # wind = Wind(timeseries=series, units='knot')
    #
    # default is .4 radians
    # w_mover = gnome.movers.WindMover(wind, uncertain_angle_scale=0)
    #
    # model.movers += w_mover

    print 'adding a simple mover:'
    s_mover = SimpleMover(velocity=(0.0, -.3, 0.0))
    model.movers += s_mover

    return model
コード例 #28
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 23, 0, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(output_dir=images_dir,
                        image_size=(1024, 768),
                        output_timestep=timedelta(hours=1),
                        )
    renderer.viewport = ((196.14, 71.89), (196.18, 71.93))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'script_arctic_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     # output most of the data associated with the elements
                                     output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=500)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomMover3D(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding a circular current and eastward current'
    fn = 'hycom_glb_regp17_2016092300_subset.nc'
    fn_ice = 'hycom-cice_ARCu0.08_046_2016092300_subset.nc'
    iconc = IceConcentration.from_netCDF(filename=fn_ice)
    ivel = IceVelocity.from_netCDF(filename=fn_ice, grid = iconc.grid)
    ic = IceAwareCurrent.from_netCDF(ice_concentration = iconc, ice_velocity= ivel, filename=fn)

    model.movers += PyCurrentMover(current = ic)
    model.movers += SimpleMover(velocity=(0., 0., 0.))
    model.movers += constant_wind_mover(20, 315, units='knots')

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(release_time=start_time,
                                        start_position=(196.16, 71.91, 40.0),
                                        num_elements=1000,
                                        end_release_time=start_time + timedelta(days=1),
                                        name='TAMOC plume',
                                        TAMOC_interval=None,  # how often to re-run TAMOC
                                        )

    model.spills[0].data_sources['currents'] = ic

    return model
コード例 #29
0
def main(RootDir, Data_Dir, StartSite, RunSite, NumStarts, RunStarts,
         ReleaseLength, TrajectoryRunLength, StartTimeFiles, TrajectoriesPath,
         NumLEs, MapFileName, refloat, current_files, wind_files,
         diffusion_coef, model_timestep, windage_range, windage_persist,
         OutputTimestep):

    timingRecord = open(os.path.join(RootDir, "timing.txt"), "w")
    count = len(StartTimeFiles) * len(RunStarts)
    timingRecord.write("This file tracks the time to process " + str(count) +
                       " gnome runs")

    # model timing
    release_duration = timedelta(hours=ReleaseLength)
    run_time = timedelta(hours=TrajectoryRunLength)

    # initiate model
    model = Model(duration=run_time, time_step=model_timestep, uncertain=False)

    # determine boundary for model
    print "Adding the map:", MapFileName
    mapfile = get_datafile(os.path.join(Data_Dir, MapFileName))
    # model.map = MapFromBNA(mapfile, refloat_halflife=refloat) no, model map needs to inclde mudflats. later

    # loop through seasons
    for Season in StartTimeFiles:
        timer1 = datetime.now()

        SeasonName = Season[1]
        start_times = open(Season[0], 'r').readlines()[:NumStarts]
        SeasonTrajDir = os.path.join(RootDir, TrajectoriesPath, SeasonName)
        if not os.path.isdir(SeasonTrajDir):
            print "Creating directory: ", SeasonTrajDir
            make_dir(SeasonTrajDir)
        print "  Season:", SeasonName

        # get and parse start times in this season
        start_dt = []
        for start_time in start_times:
            start_time = [int(i) for i in start_time.split(',')]
            start_time = datetime(start_time[0], start_time[1], start_time[2],
                                  start_time[3], start_time[4])
            start_dt.append(start_time)

        ## loop through start times
        for time_idx in RunStarts:
            timer2 = datetime.now()

            gc.collect()
            model.movers.clear()

            ## set the start location
            start_time = start_dt[time_idx]
            end_time = start_time + run_time
            model.start_time = start_time
            print "  ", start_time, "to", end_time

            ## get a list of the only data files needed for the start time (less data used)
            ## note: requires data files in year increments
            #Todo: needs fixing before real run
            years = range(start_time.year, end_time.year + 1)
            years = [str(i) for i in years]
            wind = [s for s in wind_files if any(xs in s for xs in years)]
            current = [
                s for s in current_files if any(xs in s for xs in years)
            ]

            #Todo: add mudflats. Does it work like this?
            topology = {'node_lon': 'x', 'node_lat': 'y'}

            ## add wind movers
            w_mover = PyWindMover(filename=wind)
            model.movers += w_mover

            ## add current movers
            current_mover = gs.GridCurrent.from_netCDF(current,
                                                       grid_topology=topology)
            c_mover = PyCurrentMover(current=current_mover)
            model.movers += c_mover

            tideflat = Matroos_Mudflats(current, grid_topology=topology)
            land_map = gs.MapFromBNA(mapfile)
            model.map = TideflatMap(land_map, tideflat)

            ## add diffusion
            model.movers += RandomMover(diffusion_coef=diffusion_coef)

            ## loop through start locations
            timer3 = datetime.now()

            #Todo: can it deal with the test.location.txt file??
            start_position = [float(i) for i in StartSite.split(',')]

            OutDir = os.path.join(RootDir, TrajectoriesPath, SeasonName,
                                  'pos_%03i' % (RunSite + 1))
            make_dir(OutDir)

            print "    ", RunSite, time_idx
            print "    Running: start time:", start_time,
            print "at start location:", start_position

            ## set the spill to the location
            spill = surface_point_line_spill(
                num_elements=NumLEs,
                start_position=(start_position[0], start_position[1], 0.0),
                release_time=start_time,
                end_release_time=start_time + release_duration,
                windage_range=windage_range,
                windage_persist=windage_persist)

            # print "adding netcdf output"
            netcdf_output_file = os.path.join(
                OutDir,
                'pos_%03i-t%03i_%08i.nc' %
                (RunSite + 1, time_idx, int(start_time.strftime('%y%m%d%H'))),
            )
            model.outputters.clear()
            model.outputters += NetCDFOutput(
                netcdf_output_file,
                output_timestep=timedelta(hours=OutputTimestep))

            model.spills.clear()
            model.spills += spill

            model.full_run(rewind=True)

            timer4 = datetime.now()
            diff = round((timer4 - timer3).total_seconds() / 60, 2)
            timingRecord.write("\t\t" + str(RunSite) + " took " + str(diff) +
                               " minutes to complete")
        diff = round((timer4 - timer1).total_seconds() / 3600, 2)
        count = len(RunStarts)
        timingRecord.write("\t" + str(SeasonName) + " took " + str(diff) +
                           " hours to finish " + str(count) + " Gnome runs")
    #OutDir.close
    timingRecord.close
コード例 #30
0
ファイル: script_new_TAP.py プロジェクト: govtmirror/PyGnome
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(1985, 1, 1, 13, 31)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=4),
                  time_step=3600 * 2)

    #     mapfile = get_datafile(os.path.join(base_dir, 'ak_arctic.bna'))
    mapfile = get_datafile('arctic_coast3.bna')

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    #     spill1 = point_line_release_spill(num_elements=10000,
    #                                       start_position=(-163.75,
    #                                                       69.75,
    #                                                       0.0),
    #                                       release_time=start_time)
    #
    spill1 = point_line_release_spill(num_elements=100,
                                      start_position=(196.25, 69.75, 0.0),
                                      release_time=start_time)

    model.spills += spill1
    #     model.spills += spill2

    print 'adding a wind mover:'

    #     model.movers += constant_wind_mover(0.5, 0, units='m/s')

    print 'adding a current mover:'

    fn = ['arctic_avg2_0001_gnome.nc', 'arctic_avg2_0002_gnome.nc']

    gt = {'node_lon': 'lon', 'node_lat': 'lat'}
    #     fn='arctic_avg2_0001_gnome.nc'

    wind_method = 'Euler'
    method = 'Trapezoid'
    print 'adding outputters'

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    #     renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
    #     model.outputters += renderer
    netcdf_file = os.path.join(base_dir,
                               str(model.time_step / 60) + method + '.nc')
    scripting.remove_netcdf(netcdf_file)

    print 'adding movers'
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    ice_aware_curr = IceAwareCurrent.from_netCDF(filename=fn, grid_topology=gt)
    ice_aware_wind = IceAwareWind.from_netCDF(
        filename=fn,
        ice_var=ice_aware_curr.ice_var,
        ice_conc_var=ice_aware_curr.ice_conc_var,
        grid=ice_aware_curr.grid,
    )

    #     i_c_mover = PyGridCurrentMover(current=ice_aware_curr)
    #     i_c_mover = PyGridCurrentMover(current=ice_aware_curr, default_num_method='Euler')
    i_c_mover = PyGridCurrentMover(current=ice_aware_curr,
                                   default_num_method=method)
    i_w_mover = PyWindMover(wind=ice_aware_wind,
                            default_num_method=wind_method)

    #     ice_aware_curr.grid.node_lon = ice_aware_curr.grid.node_lon[:]-360
    #     ice_aware_curr.grid.build_celltree()
    model.movers += i_c_mover
    model.movers += i_w_mover

    print 'adding an IceAwareRandomMover:'
    model.movers += IceAwareRandomMover(
        ice_conc_var=ice_aware_curr.ice_conc_var, diffusion_coef=1000)
    #     renderer.add_grid(ice_aware_curr.grid)
    #     renderer.add_vec_prop(ice_aware_curr)

    #     renderer.set_viewport(((-190.9, 60), (-72, 89)))
    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model